10 research outputs found

    Clonal expansion of Epstein-Barr virus (EBV)-infected γδ T cells in patients with chronic active EBV disease and hydroa vacciniforme-like eruptions

    Get PDF
    Chronic active Epstein-Barr virus (EBV) disease (CAEBV) is a systemic EBV-positive lymphoproliferative disorder characterized by fever, lymphadenopathy, and splenomegaly. Patients with CAEBV may present with cutaneous symptoms, including hypersensitivity to mosquito bites and hydroa vacciniforme (HV)-like eruptions. HV is a rare photodermatosis characterized by vesicles and crust formation after exposure to sunlight, with onset in childhood, and is associated with latent EBV infection. While γδ T cells have recently been demonstrated to be the major EBV-infected cell population in HV, the immunophenotypic features of EBV-infected γδ T cells in CAEBV with HV-like eruptions or HV remain largely undetermined. We describe three patients with CAEBV whose γδ T cells were found to be the major cellular target of EBV. HV-like eruptions were observed in two of these patients. A clonally expanded subpopulation of γδ T cells that were highly activated and T cell receptor Vγ9- and Vδ2-positive cells was demonstrated in all patients. We also show that the clonally expanded γδ T cells infiltrated into the HV-like eruptions in one patient from whom skin biopsy specimens were available. These results suggest the pathogenic roles of clonally expanded γδ T cells infected by EBV in patients with CAEBV and HV-like eruptions. © 2012 The Japanese Society of Hematology

    Analysis of mutations and recombination activity in RAG-deficient patients

    No full text
    金沢大学附属病院小児科Mutations in the recombination activating genes (RAG1 or RAG2) can lead to a variety of immunodeficiencies. Herein, we report 5 cases of RAG deficiency from 5 families: 3 of Omenn syndrome, 1 of severe combined immunodeficiency, and 1 of combined immunodeficiency with oligoclonal TCRγδ+ T cells, autoimmunity and cytomegalovirus infection. The genetic defects were heterogeneous and included 6 novel RAG mutations. All missense mutations except for Met443Ile in RAG2 were located in active core regions of RAG1 or RAG2. V(D)J recombination activity of each mutant was variable, ranging from half of the wild type activity to none, however, a significant decrease in average recombination activity was demonstrated in each patient. The reduced recombination activity of Met443Ile in RAG2 may suggest a crucial role of the non-core region of RAG2 in V(D)J recombination. These findings suggest that functional evaluation together with molecular analysis contributes to our broader understanding of RAG deficiency. © 2010 Elsevier Inc. All rights reserved
    corecore