35 research outputs found

    Topological melting of the metastable skyrmion lattice in the chiral magnet Co9_9Zn9_9Mn2_2

    Get PDF
    In a β\beta-Mn-type chiral magnet Co9_9Zn9_9Mn2_2, we demonstrate that the magnetic field-driven collapse of a room temperature metastable topological skyrmion lattice passes through a regime described by a partial topological charge inversion. Using Lorentz transmission electron microscopy, the magnetization distribution was observed directly as the magnetic field was swept antiparallel to the original skyrmion core magnetization, i.e. negative magnetic fields. Due to the topological stability of skyrmions, a direct transition of the metastable skyrmion lattice to the equilibrium helical state is avoided for increasingly negative fields. Instead, the metastable skyrmion lattice gradually transforms into giant magnetic bubbles separated by 2π2\pi domain walls. Eventually these large structures give way to form a near-homogeneously magnetized medium that unexpectedly hosts a low density of isolated skyrmions with inverted core magnetization, and thus a total topological charge of reduced size and opposite sign compared with the initial state. A similar phenomenon has been observed previously in systems hosting ordered lattices of magnetic bubbles stabilized by the dipolar interaction and called "topological melting". With support from numerical calculations, we argue that the observed regime of partial topological charge inversion has its origin in the topological protection of the starting metastable skyrmion state.Comment: 9 pages, 4 figure

    Cdh23 and Prepulse Inhibition

    Get PDF
    We previously identified quantitative trait loci (QTL) for prepulse inhibition (PPI), an endophenotype of schizophrenia, on mouse chromosome 10 and reported Fabp7 as a candidate gene from an analysis of F2 mice from inbred strains with high (C57BL/6N; B6) and low (C3H/HeN; C3H) PPI levels. Here, we reanalyzed the previously reported QTLs with increased marker density. The highest logarithm of odds score (26.66) peaked at a synonymous coding and splice-site variant, c.753G>A (rs257098870), in the Cdh23 gene on chromosome 10; the c.753G (C3H) allele showed a PPI-lowering effect. Bayesian multiple QTL mapping also supported the same variant with a posterior probability of 1. Thus, we engineered the c.753G (C3H) allele into the B6 genetic background, which led to dampened PPI. We also revealed an e-QTL (expression QTL) effect imparted by the c.753G>A variant for the Cdh23 expression in the brain. In a human study, a homologous variant (c.753G>A; rs769896655) in CDH23 showed a nominally significant enrichment in individuals with schizophrenia. We also identified multiple potentially deleterious CDH23 variants in individuals with schizophrenia. Collectively, the present study reveals a PPI-regulating Cdh23 variant and a possible contribution of CDH23 to schizophrenia susceptibility

    Positive temperature coefficient of the thermal conductivity above room temperature in a perovskite cobaltite

    No full text
    ABSTRACT The thermal conductivity above room temperature is investigated for LaCoO3-based materials showing spin-state and insulator-metal crossovers. A positive temperature coefficient (PTC) of the thermal conductivity is observed during the insulator-metal crossover around 500 K. Our analysis indicates that the phononic thermal transport is also enhanced in addition to the electronic contribution as the insulator-metal crossover takes place. The enhancement of the phononic component is ascribed to the reduction of the incoherent local lattice distortion coupled with the spin/orbital state of each Co3+ ion, which is induced by the enhanced spin-state fluctuation between low and excited spin-states. Moreover, fine tunability for the PTC of the thermal conductivity is demonstrated via doping hole-type carriers into LaCoO3. The observed enhancement ratio of the thermal conductivity κT (773 K) / κT (323 K) = 2.6 in La0.95Sr0.05CoO3 is the largest value among oxide materials which exhibit a PTC of their thermal conductivity above room temperature. The thermal rectification ratio is estimated to reach 61% for a hypothetical thermal diode consisting of La0.95Sr0.05CoO3 and LaGaO3, the latter of which is a typical band insulator. These results indicate that utilizing spin-state and orbital degrees of freedom in strongly correlated materials is a useful strategy for tuning thermal transport properties, especially for designing thermal diodes
    corecore