18 research outputs found

    Ycf12 is a core subunit in the photosystem II complex

    Get PDF
    AbstractThe latest crystallographic model of the cyanobacterial photosystem II (PS II) core complex added one transmembrane low molecular weight (LMW) component to the previous model, suggesting the presence of an unknown transmembrane LMW component in PS II. We have investigated the polypeptide composition in highly purified intact PS II core complexes from Thermosynechococcus elongatus, the species which yielded the PS II crystallographic models described above, to identify the unknown component. Using an electrophoresis system specialized for separation of LMW hydrophobic proteins, a novel protein of ∼5 kDa was identified as a PS II component. Its N-terminal amino acid sequence was identical to that of Ycf12. The corresponding gene is known as one of the ycf (hypothetical chloroplast reading frame) genes, ycf12, and is widely conserved in chloroplast and cyanobacterial genomes. Nonetheless, the localization and function of the gene product have never been assigned. Our finding shows, for the first time, that ycf12 is actually expressed as a component of the PS II complex in the cell, revealing that a previously unidentified transmembrane protein exists in the PS II core complex

    Comparative analysis of photosynthetic properties in ice algae and phytoplankton inhabiting Franklin Bay, the Canadian Arctic, with those in mesophilic diatoms during CASES 03-04

    Get PDF
    Psychrophilic phytoplankton and ice algae were collected in Franklin Bay, the Canadian Arctic, in late May 2004, and the photosynthetic properties were measured at 4°C using a pulse amplitude modulation fluorometer (Phyto-PAM). Rapid light curve measurements allowed for the assessment of the photosynthetic efficiency (α), maximal electron transport rate (rETRmax), and minimum saturating irradiance (Ek) in the samples. The values of α in phytoplankton (0.63-0.68) were much larger than those in ice algae (0.10-0.51), and the values of rETRmax in phytoplankton (4.6-6.7) were relatively larger than those in ice algae (1.8-4.3). However, Ek showed similar values in both samples and were around 10μmol photonsm^・s^. These values were systematically compared with those obtained from mesophilic marine diatoms (a centric diatom, Chaetoceros gracilis, and a pennate diatom, Phaeodactylum tricornutum) grown under various irradiances in the laboratory. The highly shade-adapted features of ice algae and phytoplankton were disclosed through this comparative analysis. It was also found that the non-photochemical quenching was much higher in psychrophilic samples than in mesophilic diatoms grown under moderate irradiance. Furthermore, in ice algae and phytoplankton, the decrease in rETR at high irradiances was prominent, showing that they were highly susceptible to photoinhibition. Our comparative analysis using psychrophilic phytoplankton, ice algae and two strains of mesophilic diatoms also revealed that the dependency on the xanthophyll cycle for the protection mechanisms of photosystems were remarkably different between the groups, indicating that the acclimation strategies to growth irradiances were variable between species. Such variable acclimation strategies could be one of the forces that results in a diverse algal flora that enables this region around Franklin Bay to be a productive area, even though the psychrophilic phytoplankton and ice algae are highly shade-adapted

    Pulse Granulomas in Interval Appendectomy Specimens: Histochemical Identification of Cellulose Matter

    Get PDF
    Pulse granuloma is a rare pathologic condition considered to be a benign inflammatory reaction to foreign materials originated from ingested legume matter. As for pulse granulomas of the gastrointestinal tract, association with diverticular diseases is relatively common, but only a few pulse granuloma cases associated with appendicitis have been reported. This report presents histopathologic findings of pulse granuloma lesions observed in two appendectomy cases, with some histochemical examinations of cellulose matter which is reportedly a major component to provoke pulse granuloma reaction. Our patients in both cases were girls in their teens, and they underwent interval appendectomy for acute appendicitis. Both appendectomy specimens revealed ruptured walls with inflammatory granulation tissue with marked foreign body reaction including characteristic collections of ring-like, curled ribbon-like, and/or lobulated nephrosclerosis-like hyaline structures and various foreign bodies, in which microorganisms or amyloid deposition were not identified. The presence of cellulose matter was suggested by Sirius red stain, the IKI (iodine potassium iodide)-H2SO4 method, and birefringence by polarized light. Appendectomy materials due to acute appendicitis would include pulse granuloma reaction provoked by ingested materials with cellulose. Pathologists should be familiar with the concept and histopathologic features of pulse granulomas to avoid misinterpreting them as vascular lesions and/or amyloid deposition, or any infectious organisms

    The origin of p40-negative and CDX2-positive primary squamous cell carcinoma of the stomach: case report

    No full text
    Abstract Background Primary gastric squamous cell carcinoma (SCC) is a very rare disease. The origin of this tumor remains unclear, although there are some hypotheses. Case summary A 60-year-old man consulted a previous physician complaining of upper abdominal pain. Esophagogastroduodenoscopy revealed type 2 gastric cancer, and the patient was referred to our hospital. After close examination, the patient was diagnosed as cStage IIA gastric adenocarcinoma, and distal gastrectomy was performed. Histochemical studies showed typical findings of SCC, and the tumor was surrounded by intestinal metaplasia. Immunohistochemical examination was positive for cytokeratin (CK) 5/6 and caudal-type homeobox protein 2 (CDX2) and negative for p63/p40. Conclusion The results of immunostaining for CK5/6 supported that this tumor was SCC, but the question why p63/p40 were negative and CDX2 was positive still remained. Concerning about the origin of p63/p40 and CDX2, it was suggested that the tumor cells were not derived from ectopic squamous epithelium but from intestinal metaplasia. And tumor cells looked like homogeneous and squamous metaplasia was not observed. These findings supported the idea that these tumor cells arose from stem cells in the intestinal metaplasia of the stomach

    Impedance Characteristics of Monolayer and Bilayer Graphene Films with Biofilm Formation and Growth

    No full text
    Biofilms are the result of bacterial activity. When the number of bacteria (attached to materials’ surfaces) reaches a certain threshold value, then the bacteria simultaneously excrete organic polymers (EPS: extracellular polymeric substances). These sticky polymers encase and protect the bacteria. They are called biofilms and contain about 80% water. Other components of biofilm include polymeric carbon compounds such as polysaccharides and bacteria. It is well-known that biofilms cause various medical and hygiene problems. Therefore, it is important to have a sensor that can detect biofilms to solve such problems. Graphene is a single-atom-thick sheet in which carbon atoms are connected in a hexagonal shape like a honeycomb. Carbon compounds generally bond easily to graphene. Therefore, it is highly possible that graphene could serve as a sensor to monitor biofilm formation and growth. In our previous study, monolayer graphene was prepared on a glass substrate by the chemical vapor deposition (CVD) method. Its biofilm forming ability was compared with that of graphite. As a result, the CVD graphene film had the higher sensitivity for biofilm formation. However, the monolayer graphene has a mechanical disadvantage when used as a biofilm sensor. Therefore, for this new research project, we prepared bilayer graphene with high mechanical strength by using the CVD process on copper substrates. For these specimens, we measured the capacitance component of the specimens’ impedance. In addition, we have included a discussion about the possibility of applying them as future sensors for monitoring biofilm formation and growth
    corecore