44 research outputs found

    Optimization of treatment strategy

    Get PDF
    The purpose of this study was to predict the survival time of patients with malignant glioma after radiotherapy with high accuracy by considering additional clinical factors and optimize the prescription dose and treatment duration for individual patient by using a machine learning model. A total of 35 patients with malignant glioma were included in this study. The candidate features included 12 clinical features and 192 dose–volume histogram (DVH) features. The appropriate input features and parameters of the support vector machine (SVM) were selected using the genetic algorithm based on Akaike’s information criterion, i.e. clinical, DVH, and both clinical and DVH features. The prediction accuracy of the SVM models was evaluated through a leave-one-out cross-validation test with residual error, which was defined as the absolute difference between the actual and predicted survival times after radiotherapy. Moreover, the influences of various values of prescription dose and treatment duration on the predicted survival time were evaluated. The prediction accuracy was significantly improved with the combined use of clinical and DVH features compared with the separate use of both features (P < 0.01, Wilcoxon signed rank test). Mean ± standard deviation of the leave-one-out cross-validation using the combined clinical and DVH features, only clinical features and only DVH features were 104.7 ± 96.5, 144.2 ± 126.1 and 204.5 ± 186.0 days, respectively. The prediction accuracy could be improved with the combination of clinical and DVH features, and our results show the potential to optimize the treatment strategy for individual patients based on a machine learning model

    Crosstalk between Smad and Mitogen-Activated Protein Kinases for the Regulation of Apoptosis in Cyclosporine A- Induced Renal Tubular Injury

    Get PDF
    www.karger.com/nne This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License (www.karger.com/OA-license), applicable to the online version of the article only. Distribution for non-commercial purposes only

    Acceptable fetal dose using flattening filter-free volumetric arc therapy (FFF VMAT) in postoperative chemoradiotherapy of tongue cancer during pregnancy

    Get PDF
    Optimizing irradiation protocols for pregnant women is challenging, because there are few cases and a dearth of fetal dosimetry data. We cared for a 36-year-old pregnant woman with tongue cancer. Prior to treatment, we compared three intensity-modulated radiation therapy (IMRT) techniques, including helical tomotherapy, volumetric arc therapy (VMAT), and flattening-filter free VMAT (FFF-VMAT) using treatment planning software. FFF-VMAT achieved the minimum fetal exposure and was selected as the optimal modality. We prescribed 66 Gy to the involved nodes, 60 Gy to the tumor bed and ipsilateral neck, and 54 Gy to the contralateral neck over 33 fractions. To confirm the out-of-field exposure per fraction, surface doses and the rectal dose were measured during FFF-VMAT delivery. Postoperative chemoradiotherapy was delivered using IMRT and a cisplatin regimen. Without any shielding, the total fetal dose was 0.03 Gy, within the limits established by the ICRP. A healthy girl was born vaginally at 37 weeks’ gestation

    SBRT FOR CENTRAL LUNG TUMORS WITH 56 Gy/7 fr

    Get PDF
    Stereotactic body radiotherapy (SBRT) for centrally‑located lung tumors remains a challenge because of the increased risk of treatment‑related adverse events (AEs), and uncertainty around prescribing the optimal dose. The present study reported the results of central tumor SBRT with 56 Gy in 7 fractions (fr) at the University of Tokyo Hospital. A total of 35 cases that underwent SBRT with or without volumetric‑modulated arc therapy consisting of 56 Gy/7 fr for central lung lesions between 2010 and 2016 at the University of Tokyo Hospital were reveiwed. A central lesion was defined as a tumor within 2 cm of the proximal bronchial tree (RTOG 0236 definition) or within 2 cm in all directions of any critical mediastinal structure. Local control (LC), overall survival (OS), and AEs were investigated. The Kaplan‑Meier method was used to estimate LC and OS. AEs were scored per the Common Terminology Criteria for Adverse Events Version 4.0. Thirty‑five patients with 36 central lung lesions were included. Fifteen lesions were primary non‑small cell lung cancer (NSCLC), 13 were recurrences of NSCLC, and 8 had oligo‑recurrences from other primaries. Median tumor diameter was 29 mm. Eighteen patients had had prior surgery. At a median follow‑up of 13.1 months for all patients and 18.3 months in surviving patients, 22 patients had died, ten due to primary disease (4 NSCLC), while three were treatment‑related. The 1‑ and 2‑year OS were 57.3 and 40.4%, respectively, and median OS was 15.7 months. Local recurrence occurred in only two lesions. 1‑ and 2‑year LC rates were both 96%. Nine patients experienced grade ≥3 toxicity, representing 26% of the cohort. Two of these were grade 5, one pneumonitis and one hemoptysis. Considering the background of the subject, tumor control of our central SBRT is promising, especially in primary NSCLC. However, the safety of SBRT to central lung cancer remains controversial

    Fast Iterative Reconstruction in MVCT

    Get PDF
    Statistical iterative reconstruction is expected to improve the image quality of computed tomography (CT). However, one of the challenges of iterative reconstruction is its large computational cost. The purpose of this review is to summarize a fast iterative reconstruction algorithm by optimizing reconstruction parameters. Megavolt projection data was acquired from a TomoTherapy system and reconstructed using in-house statistical iterative reconstruction algorithm. Total variation was used as the regularization term and the weight of the regularization term was determined by evaluating signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and visual assessment of spatial resolution using Gammex and Cheese phantoms. Gradient decent with an adaptive convergence parameter, ordered subset expectation maximization (OSEM), and CPU/GPU parallelization were applied in order to accelerate the present reconstruction algorithm. The SNR and CNR of the iterative reconstruction were several times better than that of filtered back projection (FBP). The GPU parallelization code combined with the OSEM algorithm reconstructed an image several hundred times faster than a CPU calculation. With 500 iterations, which provided good convergence, our method produced a 512 Ă— 512 pixel image within a few seconds. The image quality of the present algorithm was much better than that of FBP for patient data

    Standardization in radiomics analysis

    Get PDF
    Radiomics has the potential to provide tumor characteristics with noninvasive and repeatable way. The purpose of this paper is to evaluate the standardization effect of imaging features for radiomics analysis. For this purpose, we prepared two CT databases ; one includes 40 non-small cell lung cancer (NSCLC) patients for whom tumor biopsies was performed before stereotactic body radiation therapy in The University of Tokyo Hospital, and the other includes 29 early-stage NSCLC datasets from the Cancer Imaging Archive. The former was used as the training data, whereas the later was used as the test data in the evaluation of the prediction model. In total, 476 imaging features were extracted from each data. Then, both training and test data were standardized as the min-max normalization, the z-score normalization, and the whitening from the principle component analysis. All of standardization strategies improved the accuracy for the histology prediction. The area under the receiver observed characteristics curve was 0.725, 0.789, and 0.785 in above standardizations, respectively. Radiomics analysis has shown that robust features have a high prognostic power in predicting early-stage NSCLC histology subtypes. The performance was able to be improved by standardizing the data in the feature space

    Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis

    Get PDF
    We conducted a feasibility study to predict malignant glioma grades via radiomic analysis using contrast-enhanced T1-weighted magnetic resonance images (CE-T1WIs) and T2-weighted magnetic resonance images (T2WIs). We proposed a framework and applied it to CE-T1WIs and T2WIs (with tumor region data) acquired preoperatively from 157 patients with malignant glioma (grade III: 55, grade IV: 102) as the primary dataset and 67 patients with malignant glioma (grade III: 22, grade IV: 45) as the validation dataset. Radiomic features such as size/shape, intensity, histogram, and texture features were extracted from the tumor regions on the CE-T1WIs and T2WIs. The Wilcoxon–Mann–Whitney (WMW) test and least absolute shrinkage and selection operator logistic regression (LASSO-LR) were employed to select the radiomic features. Various machine learning (ML) algorithms were used to construct prediction models for the malignant glioma grades using the selected radiomic features. Leave-one-out cross-validation (LOOCV) was implemented to evaluate the performance of the prediction models in the primary dataset. The selected radiomic features for all folds in the LOOCV of the primary dataset were used to perform an independent validation. As evaluation indices, accuracies, sensitivities, specificities, and values for the area under receiver operating characteristic curve (or simply the area under the curve (AUC)) for all prediction models were calculated. The mean AUC value for all prediction models constructed by the ML algorithms in the LOOCV of the primary dataset was 0.902 ± 0.024 (95% CI (confidence interval), 0.873–0.932). In the independent validation, the mean AUC value for all prediction models was 0.747 ± 0.034 (95% CI, 0.705–0.790). The results of this study suggest that the malignant glioma grades could be sufficiently and easily predicted by preparing the CE-T1WIs, T2WIs, and tumor delineations for each patient. Our proposed framework may be an effective tool for preoperatively grading malignant gliomas

    Inhibition of APN/CD13 leads to suppressed progressive potential in ovarian carcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aminopeptidase N (APN/CD13), a 150-kDa metalloprotease, is a multifunctional cell surface aminopeptidase with ubiquitous expression. Recent studies have suggested that APN/CD13 plays an important role in tumor progression of several human malignancies. In the current study, we investigated the role of APN/CD13 in ovarian carcinoma (OVCA) progression.</p> <p>Methods</p> <p>We first examined the expression of APN/CD13 at the protein level in a variety of OVCA cell lines and tissues. We subsequently investigated whether there was a correlation between APN/CD13 expression and invasive potential of various OVCA cell lines. Moreover, we investigated the function of APN/CD13 in OVCA cells using bestatin, an APN/CD13 inhibitor, or transfection of siRNA for APN/CD13.</p> <p>Results</p> <p>We confirmed that APN/CD13 was expressed in OVCA tissues and cell lines to various extents. There was a positive correlation between APN/CD13 expression and migratory potential in various OVCA cell lines with accordingly enhanced secretion of endogenous MMP-2. Subsequently, we found a significant decrease in the proliferative and migratory abilities of OVCA cells after the addition of bestatin or the inhibition of APN/CD13 expression by siRNA. Furthermore, in an animal model, daily intraperitoneal administration of bestatin after inoculation of OVCA cells resulted in a decrease of peritoneal dissemination and in prolonged survival of nude mice.</p> <p>Conclusion</p> <p>The current data indicate the possible involvement of APN/CD13 in the development of OVCA, and suggest that clinical use of bestatin may contribute to better prognosis for ovarian carcinoma patients.</p
    corecore