31 research outputs found

    Lifestyle-Related Risk Factors for the Incidence and Progression of Chronic Kidney Disease in the Healthy Young and Middle-Aged Population

    No full text
    The prevalence of chronic kidney disease (CKD) increased by 88% from 1990 to 2016. Age of onset of lifestyle-related diseases (such as hypertension, diabetes mellitus, obesity, dyslipidemia, and hyperuricemia), which are risk factors for incident CKD, is lower now compared with the past. Thus, we aimed to evaluate the risk factors for the incidence and progression of CKD in the young and middle-aged population. There are differences in the risk for CKD among the young, middle-aged, and elderly populations. We aimed to assess obesity (which is basic component of metabolic syndrome), waist circumference, and abdominal adiposity, which are predictive factors of CKD in the younger population. Furthermore, we described the management and clinical evidence of hypertension, diabetes mellitus, dyslipidemia, and hyperuricemia for young and middle-aged patients, along with diet management and nutrients associated with kidney function. Kidney function in the young and middle-aged population is mostly normal, and they are considered a low-risk group for incident CKD. Thus, we expect this review to be useful in reducing the prevalence of CKD

    腎線維化の機序と治療

    No full text

    Mitochondrial Transcription Factor A and Mitochondrial Genome as Molecular Targets for Cisplatin-Based Cancer Chemotherapy

    No full text
    Mitochondria are important cellular organelles that function as control centers of the energy supply for highly proliferative cancer cells and regulate apoptosis after cancer chemotherapy. Cisplatin is one of the most important chemotherapeutic agents and a key drug in therapeutic regimens for a broad range of solid tumors. Cisplatin may directly interact with mitochondria, which can induce apoptosis. The direct interactions between cisplatin and mitochondria may account for our understanding of the clinical activity of cisplatin and development of resistance. However, the basis for the roles of mitochondria under treatment with chemotherapy is poorly understood. In this review, we present novel aspects regarding the unique characteristics of the mitochondrial genome in relation to the use of platinum-based chemotherapy and describe our recent work demonstrating the importance of the mitochondrial transcription factor A (mtTFA) expression in cancer cells

    High glucose concentration-induced expression of pentraxin-3 in a rat model of continuous peritoneal dialysis

    No full text
    Background: Continuous exposure to peritoneal dialysis fluids (PDFs) is associated with pathological responses such as persistent microinflammation, which leads to ultrafiltration failure. Pentraxin-3 (PTX3), a multifunctional soluble pattern recognition receptor, is produced at sites of inflammation by a wide range of cell types. This study investigates the in vivo expression of PTX3 in the peritoneal membrane of a rat continuous peritoneal dialysis (PD) model, as well as the effect of high glucose on the in vitro expression of PTX3. Methods: The expression of PTX3 was analyzed using RT-PCR, real-time PCR, immunohistochemistry and western blotting in a PD rat model receiving saline or conventional PDF containing 3.86% glucose for 8 weeks. The effects of high glucose on the expression of PTX3 were examined in cultured rat peritoneal mesothelial cells (RPMCs), mouse macrophage-like cells, and mouse fibroblasts. Results: In a rat model of PD, eight-week instillation of the conventional PDF produced increased submesothelial thickening, followed by substantially enhanced PTX3 protein levels in the submesothelial layer of peritoneal membrane. PTX3 was detected in peritoneal mesothelial cells, macrophages and fibroblasts in the thickened submesothelial area. Glucose was found to induce PTX3 protein expression in RPMCs as well as macrophage-like cells and fibroblasts. Conclusion: Continuous exposure to conventional PDF induces PTX3 expression in the peritoneal membrane of rats. High glucose may be involved in the mechanism of PDF-induced local micro-inflammation in the peritoneum
    corecore