85 research outputs found

    Qualitative investigation of the factors that generate ambivalent feelings in women who give birth after receiving negative results from non-invasive prenatal testing

    Get PDF
    Background: Women who receive negative results from non-invasive prenatal genetic testing (NIPT) may find that they later have mixed or ambivalent feelings, for example, feelings of accepting NIPT and regretting undergoing the test. This study aimed to investigate the factors generating ambivalent feelings among women who gave birth after having received negative results from NIPT. Methods: A questionnaire was sent to women who received a negative NIPT result, and a contents analysis was conducted focusing on ambivalent expressions for those 1562 women who responded the questionnaire. The qualitative data gathered from the questionnaire were analyzed using the N-Vivo software package. Results: Environmental factors, genetic counseling-related factors, and increased anticipatory anxiety, affected the feeling of ambivalence among pregnant women. Furthermore, pregnant women desired more information regarding the detailed prognosis for individuals with Down syndrome and living with them and/or termination, assuming the possibility that they were positive. Conclusions: Three major interrelated factors affected the feeling of ambivalence in women. Highlighting and discussing such factors during genetic counseling may resolve some of these ambivalences, thereby enhancing the quality of decisions made by pregnant women

    Comparative study of the effect of neuromuscular electrical stimulation and oral administration of branched-chain amino acid on preventing sarcopenia in patients after living-donor liver transplantation: study protocol for an open-label randomized controlled trial

    Get PDF
    Background: Liver cirrhosis is the irreversible fibrosis of the liver and causes refractory ascites and hepatic encephalopathy, which might not respond to treatment. Living donor liver transplantation (LDLT) is an effective treatment for patients with cirrhosis. However, post-LDLT patients are prone to muscle atrophy and sarcopenia. Therefore, physiotherapy of post-LDLT patients is essential for preventing the progression of sarcopenia. Recently, rehabilitation using neuromuscular electrical stimulation (NMES) has been reported to be useful for preventing the progression of sarcopenia. Similarly, nutrition therapy is essential for post-LDLT patients because these patients frequently experience malnutrition. However, the effects of combined NMES and nutrition therapy on post-LDLT patients remain unknown. Methods/design: This open-label, randomized, parallel-group study will compare the effects of combined therapy with NMES and branched-chain amino acids (BCAA) with those of NMES alone in patients with decompensated cirrhosis after LDLT. After LDLT, 50 patients with decompensated cirrhosis will be randomly assigned to receive NMES with BCAA or NMES without BCAA. The duration of the intervention will be 3 months. To analyze the change in skeletal muscle mass, InBody 770 body composition and body water analysis and ultrasonography will be performed before LDLT and 4 weeks and 12 weeks post-LDLT. The primary endpoint is changes in the skeletal muscle mass from baseline to 3 months. Important secondary endpoints are the changes in the skeletal muscle mass from baseline to 1 month and changes in the quadriceps strength from baseline to 1 month. Discussion: The results of this study are expected to provide evidence regarding the effect of NMES combined with BCAA therapy on the skeletal muscle of post-LDLT patients. Trial registration: Japan Registry of Clinical Research jRCTs071190051. Registered on February 26, 2020

    Ephrin-A5 and EphA5 Interaction Induces Synaptogenesis during Early Hippocampal Development

    Get PDF
    Synaptogenesis is a fundamental step in neuronal development. For spiny glutamatergic synapses in hippocampus and cortex, synaptogenesis involves adhesion of pre and postsynaptic membranes, delivery and anchorage of pre and postsynaptic structures including scaffolds such as PSD-95 and NMDA and AMPA receptors, which are glutamate-gated ion channels, as well as the morphological maturation of spines. Although electrical activity-dependent mechanisms are established regulators of these processes, the mechanisms that function during early development, prior to the onset of electrical activity, are unclear. The Eph receptors and ephrins provide cell contact-dependent pathways that regulate axonal and dendritic development. Members of the ephrin-A family are glycosyl-phosphatidylinositol-anchored to the cell surface and activate EphA receptors, which are receptor tyrosine kinases.Here we show that ephrin-A5 interaction with the EphA5 receptor following neuron-neuron contact during early development of hippocampus induces a complex program of synaptogenic events, including expression of functional synaptic NMDA receptor-PSD-95 complexes plus morphological spine maturation and the emergence of electrical activity. The program depends upon voltage-sensitive calcium channel Ca2+ fluxes that activate PKA, CaMKII and PI3 kinase, leading to CREB phosphorylation and a synaptogenic program of gene expression. AMPA receptor subunits, their scaffolds and electrical activity are not induced. Strikingly, in contrast to wild type, stimulation of hippocampal slices from P6 EphA5 receptor functional knockout mice yielded no NMDA receptor currents.These studies suggest that ephrin-A5 and EphA5 signals play a necessary, activity-independent role in the initiation of the early phases of synaptogenesis. The coordinated expression of the NMDAR and PSD-95 induced by eprhin-A5 interaction with EphA5 receptors may be the developmental switch that induces expression of AMPAR and their interacting proteins and the transition to activity-dependent synaptic regulation

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore