16 research outputs found

    Robustness of Entanglement for Bell Decomposable States

    Get PDF
    We propose a simple geometrical approach for finding the robustness of entanglement for Bell decomposable states of 2 otimes 2 quantum systems. It is shown that the robustness of entanglement is equal to the concurrence. We also present an analytical expression for two separable states that wipe out all entanglement of these states. Finally the random robustness of these states is also obtained.Comment: 11 pages, Late

    Generalized Master Function Approach to Quasi-Exactly Solvable Models

    Full text link
    By introducing the generalized master function of order up to four together with corresponding weight function, we have obtained all quasi-exactly solvable second order differential equations. It is shown that these differntial equations have solutions of polynomial type with factorziation properties, that is polynomial solutions Pm(E) can be factorized in terms of polynomial Pn(E) for m not equal to n. All known quasi-exactly quantum solvable models can be obtained from these differential equations, where roots of polynomial Pn(E) are corresponding eigen-values.Comment: 21 Page

    Optimal Lewenstein-Sanpera Decomposition for some Biparatite Systems

    Full text link
    It is shown that for a given bipartite density matrix and by choosing a suitable separable set (instead of product set) on the separable-entangled boundary, optimal Lewenstein-Sanpera (L-S) decomposition can be obtained via optimization for a generic entangled density matrix. Based on this, We obtain optimal L-S decomposition for some bipartite systems such as 2⊗22\otimes 2 and 2⊗32\otimes 3 Bell decomposable states, generic two qubit state in Wootters basis, iso-concurrence decomposable states, states obtained from BD states via one parameter and three parameters local operations and classical communications (LOCC), d⊗dd\otimes d Werner and isotropic states, and a one parameter 3⊗33\otimes 3 state. We also obtain the optimal decomposition for multi partite isotropic state. It is shown that in all 2⊗22\otimes 2 systems considered here the average concurrence of the decomposition is equal to the concurrence. We also show that for some 2⊗32\otimes 3 Bell decomposable states the average concurrence of the decomposition is equal to the lower bound of the concurrence of state presented recently in [Buchleitner et al, quant-ph/0302144], so an exact expression for concurrence of these states is obtained. It is also shown that for d⊗dd\otimes d isotropic state where decomposition leads to a separable and an entangled pure state, the average I-concurrence of the decomposition is equal to the I-concurrence of the state. Keywords: Quantum entanglement, Optimal Lewenstein-Sanpera decomposition, Concurrence, Bell decomposable states, LOCC} PACS Index: 03.65.UdComment: 31 pages, Late

    Bell-states diagonal entanglement witnesses for relativistic and non-relativistic multispinor systems in arbitrary dimensions

    Full text link
    Two kinds of Bell-states diagonal (BSD) entanglement witnesses (EW) are constructed by using the algebra of Dirac γ\gamma matrices in the space-time of arbitrary dimension dd, where the first kind can detect some BSD relativistic and non-relativistic mm-partite multispinor bound entangled states in Hilbert space of dimension 2m⌊d/2⌋2^{m\lfloor d/2\rfloor}, including the bipartite Bell-type and iso-concurrence type states in the four-dimensional space-time (d=4d=4). By using the connection between Hilbert-Schmidt measure and the optimal EWs associated with states, it is shown that as far as the spin quantum correlations is concerned, the amount of entanglement is not a relativistic scalar and has no invariant meaning. The introduced EWs are manipulated via the linear programming (LP) which can be solved exactly by using simplex method. The decomposability or non-decomposability of these EWs is investigated, where the region of non-decomposable EWs of the first kind is partially determined and it is shown that, all of the EWs of the second kind are decomposable. These EWs have the preference that in the bipartite systems, they can determine the region of separable states, i.e., bipartite non-detectable density matrices of the same type as the EWs of the first kind are necessarily separable. Also, multispinor EWs with non-polygon feasible regions are provided, where the problem is solved by approximate LP, and in contrary to the exactly manipulatable EWs, both the first and second kind of the optimal approximate EWs can detect some bound entangled states. Keywords: Relativistic entanglement, Entanglement Witness, Multispinor, Linear Programming, Feasible Region. PACs Index: 03.65.UdComment: 62 page
    corecore