489 research outputs found

    Unitary S Matrices With Long-Range Correlations and the Quantum Black Hole

    Get PDF
    We propose an S matrix approach to the quantum black hole in which causality, unitarity and their interrelation play a prominent role. Assuming the 't Hooft S matrix ansatz for a gravitating region surrounded by an asymptotically flat space-time we find a non-local transformation which changes the standard causality requirement but is a symmetry of the unitarity condition of the S matrix. This new S matrix then implies correlations between the in and out states of the theory with the involvement of a third entity which in the case of a quantum black hole, we argue is the horizon S matrix. Such correlations are thus linked to preserving the unitarity of the S matrix and to the fact that entangling unitary operators are nonlocal. The analysis is performed within the Bogoliubov S matrix framework by considering a spacetime consisting of causal complements with a boundary in between. No particular metric or lagrangian dynamics need be invoked even to obtain an evolution equation for the full S matrix. Constraints imposed by the new causality requirement and implications for the effectiveness of field theoretical descriptions and for complementarity are also discussed. We find that the tension between information preservation and complementarity may be resolved provided the full quantum gravity theory either through symmetries or fine tuning forbids the occurrence of closed time like curves of information flow. Then, even if causality is violated near the horizon at any intermediate stage, a standard causal ordering may be preserved for the observer away from the horizon. In the context of the black hole, the novelty of our formulation is that it appears well suited to understand unitarity at any intermediate stage of black hole evaporation. Moreover, it is applicable generally to all theories with long range correlations including the final state projection models.Comment: 47 pages Latex, 1 figure.Corrected typos. Some section titles changed. Minor clarifying additions to all sections. Conclusions unchanged. Accepted for publication in JHE

    BMS Supertranslation Symmetry Implies Faddeev-Kulish Amplitudes

    Full text link
    We show explicitly that, among the scattering amplitudes constructed from eigenstates of the BMS supertranslation charge, the ones that conserve this charge, are equal to those constructed from Faddeev-Kulish states. Thus, Faddeev-Kulish states naturally arise as a consequence of the asymptotic symmetries of perturbative gravity and all charge conserving amplitudes are infrared finite. In the process we show an important feature of the Faddeev-Kulish clouds dressing the external hard particles: these clouds can be moved from the incoming states to the outgoing ones, and vice-versa, without changing the infrared finiteness properties of S matrix elements. We also apply our discussion to the problem of the decoherence of momentum configurations of hard particles due to soft boson effects.Comment: 22 pages, 3 figure

    Examining gravitational collapse with test scalar fields

    Full text link
    Numerical simulations are performed of a test scalar field in a spacetime undergoing gravitational collapse. The behavior of the scalar field near the singularity is examined and implications for generic singularities are discussed. In particular, our example is the first confirmation of the BKL conjecture for an asymptotically flat spacetime.Comment: 10 pages, 11 figures, references adde
    corecore