9 research outputs found
Experimental investigation of high-energy photon splitting in atomic fields
The new data analysis of the experiment, where the photon splitting in the
atomic fields has been observed for the first time, is presented. This
experiment was performed at the tagged photon beam of the ROKK-1M facility at
the VEPP-4M collider. In the energy region of 120-450 MeV, the statistics of
photons incident on the BGO target was collected. About 400
candidates to the photon splitting events were reconstructed. Within the
attained experimental accuracy, the experimental results are consistent with
the cross section calculated exactly in an atomic field. The predictions
obtained in the Born approximation significantly differ from the experimental
results.Comment: 11 pages, 6 figures, LaTe
Elastic and Raman scattering of 9.0 and 11.4 MeV photons from Au, Dy and In
Monoenergetic photons between 8.8 and 11.4 MeV were scattered elastically and
in elastically (Raman) from natural targets of Au, Dy and In.15 new cross
sections were measured. Evidence is presented for a slight deformation in the
197Au nucleus, generally believed to be spherical. It is predicted, on the
basis of these measurements, that the Giant Dipole Resonance of Dy is very
similar to that of 160Gd. A narrow isolated resonance at 9.0 MeV is observed in
In.Comment: 31 pages, 11 figure
New Strong-Field QED Effects at ELI: Nonperturbative Vacuum Pair Production
Since the work of Sauter, and Heisenberg, Euler and K\"ockel, it has been
understood that vacuum polarization effects in quantum electrodynamics (QED)
predict remarkable new phenomena such as light-light scattering and pair
production from vacuum. However, these fundamental effects are difficult to
probe experimentally because they are very weak, and they are difficult to
analyze theoretically because they are highly nonlinear and/or nonperturbative.
The Extreme Light Infrastructure (ELI) project offers the possibility of a new
window into this largely unexplored world. I review these ideas, along with
some new results, explaining why quantum field theorists are so interested in
this rapidly developing field of laser science. I concentrate on the
theoretical tools that have been developed to analyze nonperturbative vacuum
pair production.Comment: 20 pages, 9 figures; Key Lecture at the ELI Workshop and School on
"Fundamental Physics with Ultra-High Fields", 29 Sept - 2 Oct. 2008,
Frauenworth Monastery, Germany; v2: refs updated, English translations of
reviews of Nikishov and Ritu