29 research outputs found

    Group classification of (1+1)-Dimensional Schr\"odinger Equations with Potentials and Power Nonlinearities

    Full text link
    We perform the complete group classification in the class of nonlinear Schr\"odinger equations of the form iψt+ψxx+∣ψ∣γψ+V(t,x)ψ=0i\psi_t+\psi_{xx}+|\psi|^\gamma\psi+V(t,x)\psi=0 where VV is an arbitrary complex-valued potential depending on tt and x,x, γ\gamma is a real non-zero constant. We construct all the possible inequivalent potentials for which these equations have non-trivial Lie symmetries using a combination of algebraic and compatibility methods. The proposed approach can be applied to solving group classification problems for a number of important classes of differential equations arising in mathematical physics.Comment: 10 page

    Nonlocal symmetries of integrable two-field divergent evolutionary systems

    Full text link
    Nonlocal symmetries for exactly integrable two-field evolutionary systems of the third order have been computed. Differentiation of the nonlocal symmetries with respect to spatial variable gives a few nonevolutionary systems for each evolutionary system. Zero curvature representations for some new nonevolution systems are presented

    New results on group classification of nonlinear diffusion-convection equations

    Full text link
    Using a new method and additional (conditional and partial) equivalence transformations, we performed group classification in a class of variable coefficient (1+1)(1+1)-dimensional nonlinear diffusion-convection equations of the general form f(x)ut=(D(u)ux)x+K(u)ux.f(x)u_t=(D(u)u_x)_x+K(u)u_x. We obtain new interesting cases of such equations with the density ff localized in space, which have large invariance algebra. Exact solutions of these equations are constructed. We also consider the problem of investigation of the possible local trasformations for an arbitrary pair of equations from the class under consideration, i.e. of describing all the possible partial equivalence transformations in this class.Comment: LaTeX2e, 19 page

    Group analysis and exact solutions of a class of variable coefficient nonlinear telegraph equations

    Full text link
    A complete group classification of a class of variable coefficient (1+1)-dimensional telegraph equations f(x)utt=(H(u)ux)x+K(u)uxf(x)u_{tt}=(H(u)u_x)_x+K(u)u_x, is given, by using a compatibility method and additional equivalence transformations. A number of new interesting nonlinear invariant models which have non-trivial invariance algebras are obtained. Furthermore, the possible additional equivalence transformations between equations from the class under consideration are investigated. Exact solutions of special forms of these equations are also constructed via classical Lie method and generalized conditional transformations. Local conservation laws with characteristics of order 0 of the class under consideration are classified with respect to the group of equivalence transformations.Comment: 23 page

    Symmetries of Differential Equations via Cartan's Method of Equivalence

    Full text link
    We formulate a method of computing invariant 1-forms and structure equations of symmetry pseudo-groups of differential equations based on Cartan's method of equivalence and the moving coframe method introduced by Fels and Olver. Our apparoach does not require a preliminary computation of infinitesimal defining systems, their analysis and integration, and uses differentiation and linear algebra operations only. Examples of its applications are given.Comment: 15 pages, LaTeX 2.0

    Group Analysis of Variable Coefficient Diffusion-Convection Equations. I. Enhanced Group Classification

    Full text link
    We discuss the classical statement of group classification problem and some its extensions in the general case. After that, we carry out the complete extended group classification for a class of (1+1)-dimensional nonlinear diffusion--convection equations with coefficients depending on the space variable. At first, we construct the usual equivalence group and the extended one including transformations which are nonlocal with respect to arbitrary elements. The extended equivalence group has interesting structure since it contains a non-trivial subgroup of non-local gauge equivalence transformations. The complete group classification of the class under consideration is carried out with respect to the extended equivalence group and with respect to the set of all point transformations. Usage of extended equivalence and correct choice of gauges of arbitrary elements play the major role for simple and clear formulation of the final results. The set of admissible transformations of this class is preliminary investigated.Comment: 25 page

    New variable separation approach: application to nonlinear diffusion equations

    Full text link
    The concept of the derivative-dependent functional separable solution, as a generalization to the functional separable solution, is proposed. As an application, it is used to discuss the generalized nonlinear diffusion equations based on the generalized conditional symmetry approach. As a consequence, a complete list of canonical forms for such equations which admit the derivative-dependent functional separable solutions is obtained and some exact solutions to the resulting equations are described.Comment: 19 pages, 2 fig
    corecore