17 research outputs found

    A Review on Aerosol-Based Direct-Write and Its Applications for Microelectronics

    Get PDF
    Aerosol-based direct-write refers to the additive process of printing CAD/CAM features from an apparatus which creates a liquid or solid aerosol beam. Direct-write technologies are poised to become useful tools in the microelectronics industry for rapid prototyping of components such as interconnects, sensors, and thin film transistors (TFTs), with new applications for aerosol direct-write being rapidly conceived. This paper aims to review direct-write technologies, with an emphasis on aerosol-based systems. The different currently available state-of-the-art systems such as Aerosol Jet CAB-DW, MCS, and aerodynamic lenses are described. A review and analysis of the physics behind the fluid-particle interactions including Stokes and Saffman force, experimental observations, and how a full understanding of theory and experiments can lead to new technology are presented. Finally, the applications of aerosol direct-write for microelectronics are discussed

    Non-thermal quenched damage phenomena: The application of the mean-field approach for the three-dimensional case

    No full text
    In this study, we apply the mean-field approach to the three-dimensional damage phenomena. The model approximates a solid as a polycrystalline material where grains are assumed isotropic. While the stiffness properties are considered homogeneous, the heterogeneous distribution of grains’ strengths provides the quenched statistical variability generating non-thermal fluctuations in the ensemble. Studying the statistical properties of the fluctuations, we introduce the concept of susceptibility of damage. Its divergence in the vicinity of the point of material failure can be treated as a catastrophe predictor. In accordance with this criterion, we find that damage growth in reality is much faster than it could be expected from intuitive engineering considerations. Also, we consider avalanches of grain failures and find that due to the slowing down effect the characteristic time of the relaxation processes diverges in the vicinity of the point of material failure

    Puncture of a Viscous Liquid Film Due to Droplet Falling

    No full text
    Droplet impact may rupture a liquid film on a non-wettable surface. The formation of a stable dry spot has only been studied in the inviscid case. Here, we examine the break-up of viscous films, and demonstrate the importance and role of the viscous dissipation in both film and droplet. A new model was therefore proposed to predict the necessary droplet energy to create a dry spot. It also showed that the dissipation contribution in film dominates when the ratio of the thicknesses to drop diameter is larger than 7/4

    Fused filament fabricated polypropylene composite reinforced by aligned glass fibers

    No full text
    3D printing using fused composite filament fabrication technique (FFF) allows prototyping and manufacturing of durable, lightweight, and customizable parts on demand. Such composites demonstrate significantly improved printability, due to the reduction of shrinkage and warping, alongside the enhancement of strength and rigidity. In this work, we use polypropylene filament reinforced by short glass fibers to demonstrate the effect of fiber orientation on mechanical tensile properties of the 3D printed specimens. The influence of the printed layer thickness and raster angle on final fiber orientations was investigated using X-ray micro-computed tomography. The best ultimate tensile strength of 57.4 MPa and elasticity modulus of 5.5 GPa were obtained with a 90° raster angle, versus 30.4 MPa and 2.5 GPa for samples with a criss-cross 45°, 135° raster angle, with the thinnest printed layer thickness of 0.1 mm.Peer reviewe
    corecore