384 research outputs found
THE VALIDITY AND RELIABILITY STUDY OF THE TURKISH VERSION OF PARENT EMOTION REGULATION SCALE
The purpose of this study is to adapt Parent Emotion Regulation Scale to Turkish. Original scale was developed by Pereira et. al. (2017) in order to evaluate regulation of negative emotions in parenting context. In the present study, after linguistic equivalance examined, the form was applied to 311 fathers and mothers of 3 to 15 year-old children. Internal consistency was assessed by Cronbach’s alpha and split half methods with adequete internal consistency. Confirmatory factor analysis showed a three-factor structure with good fit. Overall our results provide evidence that the PERS-T migt be a promising tool for the assessment parent emotion regulation in the Turkish context. Article visualizations
Collective excitations of a trapped boson-fermion mixture across demixing
We calculate the spectrum of low-lying collective excitations in a mesoscopic
cloud formed by a Bose-Einstein condensate and a spin-polarized Fermi gas as a
function of the boson-fermion repulsions. The cloud is under isotropic harmonic
confinement and its dynamics is treated in the collisional regime by using the
equations of generalized hydrodynamics with inclusion of surface effects. For
large numbers of bosons we find that, as the cloud moves towards spatial
separation (demixing) with increasing boson-fermion coupling, the frequencies
of a set of collective modes show a softening followed by a sharp upturn. This
behavior permits a clear identification of the quantum phase transition. We
propose a physical interpretation for the dynamical transition point in a
confined mixture, leading to a simple analytical expression for its location.Comment: revtex4, 9 pages, 8 postscript file
Transmittivity of a Bose-Einstein condensate on a lattice: interference from period doubling and the effect of disorder
We evaluate the particle current flowing in steady state through a
Bose-Einstein condensate subject to a constant force in a quasi-onedimensional
lattice and to attractive interactions from fermionic atoms that are localized
in various configurations inside the lattice wells. The system is treated
within a Bose-Hubbard tight binding model by an out-of-equilibrium Green's
function approach. A new band gap opens up when the lattice period is doubled
by locating the fermions in alternate wells and yields an interference pattern
in the transmittivity on varying the intensity of the driving force. The
positions of the transmittivity minima are determined by matching the period of
Bloch oscillations and the time for tunnelling across the band gap. Massive
disorder in the distribution of the fermions will wash out the interference
pattern, but the same period doubling of the lattice can be experimentally
realized in a four-beam set-up. We report illustrative numerical results for a
mixture of 87Rb and 40K atoms in an optical lattice created by laser beams with
a wavelength of 763 nm.Comment: 13 pages, 5 figure
Stable and Unstable Circular Strings in Inflationary Universes
It was shown by Garriga and Vilenkin that the circular shape of nucleated
cosmic strings, of zero loop-energy in de Sitter space, is stable in the sense
that the ratio of the mean fluctuation amplitude to the loop radius is
constant. This result can be generalized to all expanding strings (of non-zero
loop-energy) in de Sitter space. In other curved spacetimes the situation,
however, may be different.
In this paper we develop a general formalism treating fluctuations around
circular strings embedded in arbitrary spatially flat FRW spacetimes. As
examples we consider Minkowski space, de Sitter space and power law expanding
universes. In the special case of power law inflation we find that in certain
cases the fluctuations grow much slower that the radius of the underlying
unperturbed circular string. The inflation of the universe thus tends to wash
out the fluctuations and to stabilize these strings.Comment: 15 pages Latex, NORDITA 94/14-
Back Reaction of Strings in Self-Consistent String Cosmology
We compute the string energy-momentum tensor and {\bf derive} the string
equation of state from exact string dynamics in cosmological spacetimes.
and -dimensional universes are treated for any expansion factor
. Strings obey the perfect fluid relation with
three different behaviours: (i) {\it Unstable} for with
growing energy density , {\bf negative} pressure, and ; (ii){\it Dual} for , with , {\bf positive} pressure and (as radiation); (iii) {\it
Stable} for with , {\bf vanishing}
pressure and (as cold matter). We find the back reaction effect
of these strings on the spacetime and we take into account the quantum string
decay through string splitting. This is achieved by considering {\bf
self-consistently} the strings as matter sources for the Einstein equations, as
well as for the complete effective string equations. String splitting
exponentially suppress the density of unstable strings for large . The
self-consistent solution to the Einstein equations for string dominated
universes exhibits the realistic matter dominated behaviour for large times and the radiation dominated behaviour for early times. De Sitter universe does not emerge as
solution of the effective string equations. The effective string action
(whatever be the dilaton, its potential and the central charge term) is not the
appropriate framework in which to address the question of string driven
inflation.Comment: 29 pages, revtex, LPTHE-94-2
The effectiveness of two silicone dressings for sacral and heel pressure ulcer prevention compared with no dressings in high‐risk intensive care unit patients: a randomized controlled parallel‐group trial
Background There is a high incidence of pressure ulcers in high-risk settings such as intensive care. There is emerging evidence that the application of dressings to pressure ulcer predilection areas (sacrum and heels) improves prevention strategies. Objectives To determine whether preventive dressings, applied to the sacrum and heels of high-risk patients in intensive care units, in addition to standard prevention, reduces the incidence of pressure ulcers. Methods Between June 2015 and July 2018, a randomized, controlled, two-arm, superiority pragmatic study was performed with a concealed 1 : 1 allocation to the intervention and control group. Patients assigned to the intervention group had dressings applied to the sacrum and heels. Results In total, 7575 patients were screened for eligibility and 475 patients were included and allocated to both groups. Finally, 212 patients in the intervention group and 210 in the control group were analysed. The mean age was 63 center dot 5 years and the majority of patients were male (65 center dot 4%). The cumulative pressure ulcer incidence category II and above was 2 center dot 8% in the intervention, and 10 center dot 5% in the control group (P = 0 center dot 001). Compared with the control group, the relative risk in the intervention group was 0 center dot 26 [95% confidence interval (CI) 0 center dot 11-0 center dot 62] and the absolute risk reduction was 0 center dot 08 (95% CI 0 center dot 03-0 center dot 13). Conclusions The results indicate that the application of dressings, in addition to standard prevention, in high-risk intensive care unit patients is effective in preventing pressure ulcers at the heels and sacrum.
What's already known about this topic? Pressure ulcers are severe soft tissue injuries and wounds, which occur worldwide in all healthcare settings. Despite preventive interventions, pressure ulcers still develop. There is emerging evidence that dressings help to prevent pressure ulcers.
What does this study add? The incidence of pressure ulcers in intensive care units among high-risk patients remains high. The application of dressings to the sacrum and heels, in addition to standard preventive measures, reduces the relative and absolute risks for the development of pressure ulcers. The application of preventive dressings at the heels and sacrum seems to be feasible in intensive care settings
Collective ferromagnetism in two-component Fermi-degenerate gas trapped in finite potential
Spin asymmetry of the ground states is studied for the trapped
spin-degenerate (two-component) gases of the fermionic atoms with the repulsive
interaction between different components, and, for large particle number, the
asymmetric (collective ferromagnetic) states are shown to be stable because it
can be energetically favorable to increase the fermi energy of one component
rather than the increase of the interaction energy between up-down components.
We formulate the Thomas-Fermi equations and show the algebraic methods to solve
them. From the Thomas-Fermi solutions, we find three kinds of ground states in
finite system: 1) paramagnetic (spin-symmetric), 2) ferromagnetic (equilibrium)
and 3) ferromagnetic (nonequilibrium) states. We show the density profiles and
the critical atom numbers for these states obtained analytically, and, in
ferromagnetic states, the spin-asymmetries are shown to occur in the central
regions of the trapped gas, and grows up with increasing particle number. Based
on the obtained results, we discuss the experimental conditions and current
difficulties to realize the ferromagnetic states of the trapped atom gas, which
should be overcome.Comment: submit to PR
Collapse in boson-fermion mixtures with all-repulsive interactions
We describe the collapse of the bosonic component in a boson-fermion mixture
due to the pressure exerted on them by a large fermionic component, leading to
collapse in a system with all-repulsive interactions. We describe the phenomena
early collapse and of super-slow collapse of the mixture.Comment: 5 page
Two-dimensional gravitation and Sine-Gordon-Solitons
Some aspects of two-dimensional gravity coupled to matter fields, especially
to the Sine-Gordon-model are examined. General properties and boundary
conditions of possible soliton-solutions are considered. Analytic
soliton-solutions are discovered and the structure of the induced space-time
geometry is discussed. These solutions have interesting features and may serve
as a starting point for further investigations.Comment: 23 pages, latex, references added, to appear in Phys.Rev.
Odor and Odorous Chemical Emissions from Animal Buildings: Part 2—Odor Emissions
This study was an add-on project to the National Air Emissions Monitoring Study (NAEMS) and focused on comprehensive measurement of odor emissions. Odor emissions from two animal species (dairy and swine) from four sites with nine barns/rooms (two dairy barns in Wisconsin, two dairy barns and two swine rooms in Indiana, and three swine barns in Iowa) during four cycles (13-week periods) were measured. Odor samples were analyzed in three olfactometry laboratories and no significant difference was found among these laboratories. The highest ambient odor concentrations and barn odor emissions were measured for the Iowa swine site. The most intense odor and the least pleasant odor were also measured for this site. Ambient odor concentrations were the lowest for the Wisconsin dairy site. But the lowest barn odor emission rates were measured for the Indiana dairy site. Significantly higher odor emissions were measured in summer
- …