16 research outputs found

    Lung Macrophage Functional Properties in Chronic Obstructive Pulmonary Disease

    No full text
    Chronic obstructive pulmonary disease (COPD) is caused by the chronic exposure of the lungs to toxic particles and gases. These exposures initiate a persistent innate and adaptive immune inflammatory response in the airways and lung tissues. Lung macrophages (LMs) are key innate immune effector cells that identify, engulf, and destroy pathogens and process inhaled particles, including cigarette smoke and particulate matter (PM), the main environmental triggers for COPD. The number of LMs in lung tissues and airspaces is increased in COPD, suggesting a potential key role for LMs in initiating and perpetuating the chronic inflammatory response that underpins the progressive nature of COPD. The purpose of this brief review is to discuss the origins of LMs, their functional properties (chemotaxis, recruitment, mediator production, phagocytosis and apoptosis) and changes in these properties due to exposure to cigarette smoke, ambient particulate and pathogens, as well as their persistent altered functional properties in subjects with established COPD. We also explore the potential to therapeutically modulate and restore LMs functional properties, to improve impaired immune system, prevent the progression of lung tissue destruction, and improve both morbidity and mortality related to COPD

    Induction of plasmid-mediated AmpC β-lactamase DHA-1 by piperacillin/tazobactam and other β-lactams in Enterobacteriaceae.

    No full text
    Chromosomal AmpC β-lactamase induction by several types of β-lactams has been reported, but not enough data are available on DHA-1 β-lactamase, a plasmid-mediated AmpC β-lactamase. Therefore, we evaluated the DHA-1 β-lactamase induction by various antibiotics including piperacillin/tazobactam (PIP/TZB) in this study. Six strains (Enterobacter cloacae 2 strains, Citrobacter freundii 1 strain, Serratia marcescens 2 strain, and Morganella morganii 1 strain) possessing chromosomal inducible AmpC β-lactamase were used as controls. Four strains (Escherichia coli 2 strains, Klebsiella pneumoniae 1 strain, and C. koseri 1 strain) possessing DHA-1 β-lactamase were used. The β-lactamase activities were determined by a spectrophotometer using nitrocefin. β-lactamase induction by PIP, PIP/TZB was not observed in any strains and β-lactamase induction by third- and fourth-generation cephems was not observed in most strains. The induction ratios of the chromosomal AmpC β-lactamase in the reference group by PIP/TZB were <1.51, and those of the DHA-1 β-lactamase were <1.36, except for K. pneumoniae Rkp2004 (2.22). The β-lactamase induction by first- and second-generation cephems, flomoxef, and carbapenem differed in each strain. Cefmetazole (CMZ) strongly induced β-lactamase. This study demonstrated that the induction of DHA-1 β-lactamase was similar to that of chromosomal AmpC using various Enterobacteriaceae, although the induction of β-lactamase in both groups by PIP/TZB was low. We also reported that the induction of PIP/TZB, a β-lactamase inhibitor combination antibiotic, against various AmpC-producing Enterobacteriaceae, including DHA-1 producers, was low

    Difficulty differentiating primary mediastinal classical Hodgkin lymphoma from inflammatory myofibroblastic tumor: A case report

    No full text
    Abstract A 20‐year‐old Japanese man visited our hospital because an enlarged mediastinal shadow had been detected on chest x‐ray. Chest computed tomography revealed a large mediastinal mass with multiple lymph node enlargement, pericardial effusion, and bilateral pleural effusion. He was diagnosed with inflammatory myofibroblastic tumor (IMT) based on a thoracoscopic tumor biopsy. Initial corticosteroid and celecoxib treatment was only partially effective; therefore, additional tumor rebiopsy and left axillary lymph node biopsy were performed. Based on the findings, the patient was rediagnosed with classical Hodgkin lymphoma (CHL). To date, there has only been one report of a case initially diagnosed as IMT and rediagnosed as CHL, as in our case, and only three reports of malignant lymphoma mimicking IMT. When IMT is suspected based on pathological findings and subsequently with treatment failure, possible CHL and performing rebiopsy should be considered

    Combined Radiographic Features and Age Can Distinguish <i>Mycoplasma pneumoniae</i> Pneumonia from Other Bacterial Pneumonias: Analysis Using the 16S rRNA Gene Sequencing Data

    No full text
    The study objective was to evaluate chest radiographic features that distinguish Mycoplasma pneumoniae pneumonia (MPP) from other bacterial pneumonias diagnosed based on the bacterial floral analysis with 16S rRNA gene sequencing, using bronchoalveolar lavage fluid samples directly obtained from pneumonia lesions. Patients were grouped according to the dominant bacterial phenotype; among 120 enrolled patients with CAP, chest CT findings were evaluated in 55 patients diagnosed with a mono-bacterial infection (one bacterial phylotype occupies more than 80% of all phylotypes in a sample) by three authorized respiratory physicians. Among this relatively small sample size of 55 patients with CAP, 10 had MPP, and 45 had other bacterial pneumonia and were categorized into four groups according to their predominant bacterial phylotypes. We created a new scoring system to discriminate MPP from other pneumonias, using a combination of significant CT findings that were observed in the M. pneumoniae group, and age (<60 years) (MPP–CTA scoring system). When the cutoff value was set to 1, this scoring system had a sensitivity of 80%, a specificity of 93%, a positive predictive value of 73%, and a negative predictive value of 95%. Among the CT findings, centrilobular nodules were characteristic findings in patients with MPP, and a combination of chest CT findings and age might distinguish MPP from other bacterial pneumonias

    Combined Radiographic Features and Age Can Distinguish Mycoplasma pneumoniae Pneumonia from Other Bacterial Pneumonias: Analysis Using the 16S rRNA Gene Sequencing Data

    No full text
    The study objective was to evaluate chest radiographic features that distinguish Mycoplasma pneumoniae pneumonia (MPP) from other bacterial pneumonias diagnosed based on the bacterial floral analysis with 16S rRNA gene sequencing, using bronchoalveolar lavage fluid samples directly obtained from pneumonia lesions. Patients were grouped according to the dominant bacterial phenotype; among 120 enrolled patients with CAP, chest CT findings were evaluated in 55 patients diagnosed with a mono-bacterial infection (one bacterial phylotype occupies more than 80% of all phylotypes in a sample) by three authorized respiratory physicians. Among this relatively small sample size of 55 patients with CAP, 10 had MPP, and 45 had other bacterial pneumonia and were categorized into four groups according to their predominant bacterial phylotypes. We created a new scoring system to discriminate MPP from other pneumonias, using a combination of significant CT findings that were observed in the M. pneumoniae group, and age (&lt;60 years) (MPP&ndash;CTA scoring system). When the cutoff value was set to 1, this scoring system had a sensitivity of 80%, a specificity of 93%, a positive predictive value of 73%, and a negative predictive value of 95%. Among the CT findings, centrilobular nodules were characteristic findings in patients with MPP, and a combination of chest CT findings and age might distinguish MPP from other bacterial pneumonias

    Abundance of Non-Polarized Lung Macrophages with Poor Phagocytic Function in Chronic Obstructive Pulmonary Disease (COPD)

    No full text
    Lung macrophages are the key immune effector cells in the pathogenesis of Chronic Obstructive Pulmonary Disease (COPD). Several studies have shown an increase in their numbers in bronchoalveolar lavage fluid (BAL) of subjects with COPD compared to controls, suggesting a pathogenic role in disease initiation and progression. Although reduced lung macrophage phagocytic ability has been previously shown in COPD, the relationship between lung macrophages’ phenotypic characteristics and functional properties in COPD is still unclear. (1) Methods: Macrophages harvested from bronchoalveolar lavage (BAL) fluid of subjects with and without COPD (GOLD grades, I–III) were immuno-phenotyped, and their function and gene expression profiles were assessed using targeted assays. (2) Results: BAL macrophages from 18 COPD and 10 (non-COPD) control subjects were evaluated. The majority of macrophages from COPD subjects were non-polarized (negative for both M1 and M2 markers; 77.9%) in contrast to controls (23.9%; p < 0.001). The percentages of these non-polarized macrophages strongly correlated with the severity of COPD (p = 0.006) and current smoking status (p = 0.008). Non-polarized macrophages demonstrated poor phagocytic function in both the control (p = 0.02) and COPD (p < 0.001) subjects. Non-polarized macrophages demonstrated impaired ability to phagocytose Staphylococcus aureus (p < 0.001). They also demonstrated reduced gene expression for CD163, CD40, CCL13 and C1QA&B, which are involved in pathogen recognition and processing and showed an increased gene expression for CXCR4, RAF1, amphiregulin and MAP3K5, which are all involved in promoting the inflammatory response. (3) Conclusions: COPD is associated with an abundance of non-polarized airway macrophages that is related to the severity of COPD. These non-polarized macrophages are predominantly responsible for the poor phagocytic capacity of lung macrophages in COPD, having reduced capacity for pathogen recognition and processing. This could be a key risk factor for COPD exacerbation and could contribute to disease progression.Medicine, Faculty ofNon UBCMedicine, Department ofRespiratory Medicine, Division ofReviewedFacult
    corecore