940 research outputs found
Carrier induced ferromagnetism in diluted local-moment systems
The electronic and magnetic properties of concentrated and diluted
ferromagnetic semiconductors are investigated by using the Kondo lattice model,
which describes an interband exchange coupling between itinerant conduction
electrons and localized magnetic moments. In our calculations, the electronic
problem and the local magnetic problem are solved separately. For the
electronic part an interpolating self-energy approach together with a coherent
potential approximation (CPA) treatment of a dynamical alloy analogy is used to
calculate temperature-dependent quasiparticle densities of states and the
electronic self-energy of the diluted local-moment system. For constructing the
magnetic phase diagram we use a modified RKKY theory by mapping the interband
exchange to an effective Heisenberg model. The exchange integrals appear as
functionals of the diluted electronic self-energy being therefore temperature-
and carrier-concentration-dependent and covering RKKY as well as double
exchange behavior. The disorder of the localized moments in the effective
Heisenberg model is solved by a generalized locator CPA approach. The main
results are: 1) extremely low carrier concentrations are sufficient to induce
ferromagnetism; 2) the Curie temperature exhibits a strikingly non-monotonic
behavior as a function of carrier concentration with a distinct maximum; 3)
curves break down at critical due to antiferromagnetic correlations
and 4) the dilution always lowers but broadens the ferromagnetic region
with respect to carrier concentration.Comment: 11 pages, 5 figure
Half-metallic diluted antiferromagnetic semiconductors
The possibility of half-metallic antiferromagnetism, a special case of
ferrimagnetism with a compensated magnetization, in the diluted magnetic
semiconductors is highlighted on the basis of the first principles electronic
structure calculation. As typical examples, the electrical and magnetic
properties of II-VI compound semiconductors doped with 3d transition metal ion
pairs--(V, Co) and (Fe, Cr)--are discussed
Coordination Dependence of Hyperfine Fields of 5sp Impurities on Ni Surfaces
We present first-principles calculations of the magnetic hyperfine fields H
of 5sp impurities on the (001), (111), and (110) surfaces of Ni. We examine the
dependence of H on the coordination number by placing the impurity in the
surfaces, on top of them at the adatom positions, and in the bulk. We find a
strong coordination dependence of H, different and characteristic for each
impurity. The behavior is explained in terms of the on-site s-p hybridization
as the symmetry is reduced at the surface. Our results are in agreement with
recent experimental findings.Comment: 4 pages, 3 figure
Transition temperature of ferromagnetic semiconductors: a dynamical mean field study
We formulate a theory of doped magnetic semiconductors such as
GaMnAs which have attracted recent attention for their possible use
in spintronic applications. We solve the theory in the dynamical mean field
approximation to find the magnetic transition temperature as a function
of magnetic coupling strength and carrier density . We find that
is determined by a subtle interplay between carrier density and magnetic
coupling.Comment: 4 pages, 4 figure
Optical Conductivity of Ferromagnetic Semiconductors
The dynamical mean field method is used to calculate the frequency and
temperature dependent conductivity of dilute magnetic semiconductors.
Characteristic qualitative features are found distinguishing weak,
intermediate, and strong carrier-spin coupling and allowing quantitative
determination of important parameters defining the underlying ferromagnetic
mechanism
Electronic structures of doped anatase : (M=Co, Mn, Fe, Ni)
We have investigated electronic structures of a room temperature diluted
magnetic semiconductor : Co-doped anatase . We have obtained the
half-metallic ground state in the local-spin-density approximation(LSDA) but
the insulating ground state in the LSDA++SO incorporating the spin-orbit
interaction. In the stoichiometric case, the low spin state of Co is realized
with the substantially large orbital moment. However, in the presence of oxygen
vacancies near Co, the spin state of Co becomes intermediate. The
ferromagnetisms in the metallic and insulating phases are accounted for by the
double-exchange-like and the superexchange mechanism, respectively. Further,
the magnetic ground states are obtained for Mn and Fe doped ,
while the paramagnetic ground state for Ni-doped .Comment: 5 pages, 4 figure
Photoemission studies of GaMnAs: Mn-concentration dependent properties
Using angle-resolved photoemission, we have investigated the development of
the electronic structure and the Fermi level pinnning in GaMnAs
with Mn concentrations in the range 1--6%. We find that the Mn-induced changes
in the valence-band spectra depend strongly on the Mn concentration, suggesting
that the interaction between the Mn ions is more complex than assumed in
earlier studies. The relative position of the Fermi level is also found to be
concentration-dependent. In particular we find that for concentrations around
3.5--5% it is located very close to the valence-band maximum, which is in the
range where metallic conductivity has been reported in earlier studies. For
concentration outside this range, larger as well as smaller, the Fermi level is
found to be pinned at about 0.15 eV higher energy.Comment: REVTeX style; 7 pages, 3 figure
Electronic structure, exchange interactions and Curie temperature in diluted III-V magnetic semiconductors: (GaCr)As, (GaMn)As, (GaFe)As
We complete our earlier (Phys. Rev. B, {\bf 66}, 134435 (2002)) study of the
electronic structure, exchange interactions and Curie temperature in (GaMn)As
and extend the study to two other diluted magnetic semiconductors (GaCr)As and
(GaFe)As. Four concentrations of the 3d impurities are studied: 25%, 12.5%,
6.25%, 3.125%. (GaCr)As and (GaMn)As are found to possess a number of similar
features. Both are semi-metallic and ferromagnetic, with similar properties of
the interatomic exchange interactions and the same scale of the Curie
temperature. In both systems the presence of the charge carriers is crucial for
establishing the ferromagnetic order. An important difference between two
systems is in the character of the dependence on the variation of the number of
carriers. The ferromagnetism in (GaMn)As is found to be very sensitive to the
presence of the donor defects, like As antisites. On the other hand,
the Curie temperature of (GaCr)As depends rather weakly on the presence of this
type of defects but decreases strongly with decreasing number of electrons. We
find the exchange interactions between 3d atoms that make a major contribution
into the ferromagnetism of (GaCr)As and (GaMn)As and propose an exchange path
responsible for these interactions. The properties of (GaFe)As are found to
differ crucially from the properties of (GaCr)As and (GaMn)As. (GaFe)As does
not show a trend to ferromagnetism and is not half-metallic that makes this
system unsuitable for the use in spintronic semiconductor devices
- …