947 research outputs found

    Optical Conductivity of Ferromagnetic Semiconductors

    Full text link
    The dynamical mean field method is used to calculate the frequency and temperature dependent conductivity of dilute magnetic semiconductors. Characteristic qualitative features are found distinguishing weak, intermediate, and strong carrier-spin coupling and allowing quantitative determination of important parameters defining the underlying ferromagnetic mechanism

    Transition temperature of ferromagnetic semiconductors: a dynamical mean field study

    Full text link
    We formulate a theory of doped magnetic semiconductors such as Ga1x_{1-x}Mnx_xAs which have attracted recent attention for their possible use in spintronic applications. We solve the theory in the dynamical mean field approximation to find the magnetic transition temperature TcT_c as a function of magnetic coupling strength JJ and carrier density nn. We find that TcT_c is determined by a subtle interplay between carrier density and magnetic coupling.Comment: 4 pages, 4 figure

    The local magnetic moments and hyperfine magnetic fields in disordered metal-metalloid alloys

    Full text link
    The local magnetic moments and hyperfine magnetic fields (HFF) in the ordered alloys Fe_{15}Sn and Fe_{15}Si are calculated with the first-principles full-potential linear augmented plane wave (FP LAPW) method. The results are compared with the experimental data on Fe-M (M=Si, Sn) disordered alloys at small metalloid concentration. The relaxation of the lattice around the impurity and its influence on the quantities under consideration are studied. The mechanism of the local magnetic moment formation is described. It is proved that the main distinction between these alloys is connected with the different lattice parameters. Three contributions to the HFF are discussed: the contributions of the core and valence electron polarization to the Fermi-contact part, and the contibution from the orbital magnetic moment.Comment: 3 pages, 3 figures, submitted to Phys. Rev.

    Noncollinear Ferromagnetism in (III,Mn)V Semiconductors

    Full text link
    We investigate the stability of the collinear ferromagnetic state in kinetic exchange models for (III,Mn)V semiconductors with randomly distributed Mn ions >. Our results suggest that {\em noncollinear ferromagnetism} is commom to these semiconductor systems. The instability of the collinear state is due to long-ranged fluctuations invloving a large fraction of the localized magnetic moments. We address conditions that favor the occurrence of noncollinear groundstates and discuss unusual behavior that we predict for the temperature and field dependence of its saturation magnetization.Comment: 5 pages, one figure included, presentation of technical aspects simplified, version to appear in Phys. Rev. Let

    Carrier induced ferromagnetism in diluted magnetic semi-conductors

    Full text link
    We present a theory for carrier induced ferromagnetism in diluted magnetic semi-conductor (DMS). Our approach treats on equal footing quantum fluctuations within the RPA approximation and disorder within CPA. This method allows for the calculation of TcT_c, magnetization and magnon spectrum as a function of hole, impurity concentration and temperature. It is shown that, sufficiently close to TcT_c, and within our decoupling scheme (Tyablicov type) the CPA for the itinerant electron gas reduces to the Virtual Crystal Approximation. This allows, in the low impurity concentration and low density of carriers to provide analytical expression for TcT_c. For illustration, we consider the case of Ga1cMncAsGa_{1-c}Mn_{c}As and compare our results with available experimental data.Comment: 5 figures included. to appear in Phys. Rev. B (brief report

    Polaron percolation in diluted magnetic semiconductors

    Full text link
    We theoretically study the development of spontaneous magnetization in diluted magnetic semiconductors as arising from a percolation of bound magnetic polarons. Within the framework of a generalized percolation theory we derive analytic expressions for the Curie temperature and the magnetization, obtaining excellent quantitative agreement with Monte Carlo simulation results and good qualitative agreement with experimental results.Comment: 5 page

    Alkali-halogen metasomatism of the CM carbonaceous chondrites

    Get PDF
    Meteorite Hills (MET) 01075 is unique among the CM carbonaceous chondrites in containing the feldspathoid mineral sodalite, and hence it may provide valuable evidence for a nebular or parent body process that has not been previously recorded by this meteorite group. MET 01075 is composed of aqueously altered chondrules and calcium‐ and aluminum‐rich inclusions (CAIs) in a matrix that is predominantly made of serpentine‐ and tochilinite‐rich particles. The chondrules have been impact flattened and define a foliation petrofabric. Sodalite occurs in a 0.6 mm size CAI that also contains spinel, perovskite, and diopside together with Fe‐rich phyllosilicate and calcite. By analogy with feldspathoid‐bearing CAIs in the CV and CO carbonaceous chondrites, the sodalite is interpreted to have formed by replacement of melilite or anorthite during alkali‐halogen metasomatism in a parent body environment. While it is possible that the CAI was metasomatized in a precursor parent body, then excavated and incorporated into the MET 01075 parent body, in situ metasomatism is the favored model. The brief episode of relatively high temperature water–rock interaction was driven by radiogenic or impact heating, and most of the evidence for metasomatism was erased by subsequent lower temperature aqueous alteration. MET 01075 is very unusual in sampling a CM parent body region that underwent early alkali‐halogen metasomatism and has retained one of its products
    corecore