1,906 research outputs found
Ground-state phase diagram of the Kondo lattice model on triangular-to-kagome lattices
We investigate the ground-state phase diagram of the Kondo lattice model with
classical localized spins on triangular-to-kagome lattices by using a
variational calculation. We identify the parameter regions where a
four-sublattice noncoplanar order is stable with a finite spin scalar chirality
while changing the lattice structure from triangular to kagome continuously.
Although the noncoplanar spin states appear in a wide range of parameters, the
spin configurations on the kagome network become coplanar as approaching the
kagome lattice; eventually, the scalar chirality vanishes for the kagome
lattice model.Comment: 7 pages, 3 figure
Noncoplanar spin canting in lightly-doped ferromagnetic Kondo lattice model on a triangular lattice
Effect of the coupling to mobile carriers on the 120
antiferromagnetic state is investigated in a ferromagnetic Kondo lattice model
on a frustrated triangular lattice. Using a variational calculation for various
spin orderings up to a four-site unit cell, we identify the ground-state phase
diagram with focusing on the lightly-doped region. We find that an electron
doping from the band bottom immediately destabilizes a 120 coplanar
antiferromagnetic order and induces a noncoplanar three-sublattice ordering
accompanied by an intervening phase separation. This noncoplanar phase has an
umbrella-type spin configuration with a net magnetic moment and a finite spin
scalar chirality. This spin-canting state emerges in competition between the
antiferromagnetic superexchange interaction and the ferromagnetic
double-exchange interaction under geometrical frustration. In contrast, a hole
doping from the band top retains the 120-ordered state up to a finite
doping concentration and does not lead to a noncolpanar ordering.Comment: 6 pages, 4 figures, accepted for publication in J. Phys.: Conf. Se
Diffuse back-illumination extinction imaging of soot formation from a liquid fuel film
The transient combustion of a liquid iso-octane film, isolated from the often co-existing combustion of liquid sprays, was investigated within the nominally quiescent ambient of a constant volume chamber using a custom-made liquid fuel film generation system. Soot formation throughout the combustion process, from ignition to extinction, was visualized using high-speed diffuse back-illumination extinction imaging technique, providing temporally resolved spatial distribution of soot optical thickness () in the chamber. The impact of ambient pressure and ambient oxygen content on soot formation was examined over a range of 2 – 5 bar (absolute) and 16 – 30% (in terms of molar fraction of oxygen), respectively. Regardless of the test conditions, the fuel film combustion entailed three stages, namely flame initiation, steady burning and flame extinction. While the ambient oxygen content was kept constant, the flame gradually became turbulent-like and the flame flickering less distinct as ambient pressure was increased. The total amount of soot generated within the chamber was found to first increase then decrease with the ambient pressure, due to the competing impacts of increasing pressure on promoting soot-formation reaction rate and enhancing mixing of fuel vapour with the entrained air. Increasing ambient oxygen content, on the other hand, consistently enhanced soot formation, which may be associated with its impact on boosting flame temperature and consequently liquid fuel evaporation rate. In addition, flame flickering remained distinct for ambient oxygen content above atmospheric level, while becoming substantially less observable for that below atmospheric level. Flickering frequency, for all test conditions with distinct flame flickering, had a value of approximately 10 Hz and gradually increased with time during the steady burning stage, suggesting the shrinkage of the fuel film diameter. Flickering of the flame resulted in fluctuations in the total amount of soot presented in the combustion chamber. The power of this fluctuation varied with time, and this temporal variation of fluctuation power also depended on experimental conditions, due to its dependency on the combined effects of soot concentration and volume of the flame
Direct Observation of Site-specific Valence Electronic Structure at Interface: SiO2/Si Interface
Atom specific valence electronic structures at interface are elucidated
successfully using soft x-ray absorption and emission spectroscopy. In order to
demonstrate the versatility of this method, we investigated SiO2/Si interface
as a prototype and directly observed valence electronic states projected at the
particular atoms of the SiO2/Si interface; local electronic structure strongly
depends on the chemical states of each atom. In addition we compared the
experimental results with first-principle calculations, which quantitatively
revealed the interfacial properties in atomic-scale.Comment: 4 pages, 3 figure
One-dimensional transport in polymer nanofibers
We report our transport studies in quasi one-dimensional (1D) conductors -
helical polyacetylene fibers doped with iodine and the data analysis for other
polymer single fibers and tubes. We found that at 30 K < T < 300 K the
conductance and the current-voltage characteristics follow the power law: G(T)
~ T^alpha with alpha ~ 2.2-7.2 and I(V) ~ V^betta with betta ~ 2-5.7. Both G(T)
and I(V) show the features characteristic of 1D systems such as Luttinger
liquid or Wigner crystal. The relationship between our results and theories for
tunneling in 1D systems is discussed.Comment: 11 pages, 3 figures, accepted for publication in Phys. Rev. Letter
Photon generation by laser-Compton scattering at the KEK-ATF
We performed a photon generation experiment by laser-Compton scattering at
the KEK-ATF, aiming to develop a Compton based polarized positron source for
linear colliders. In the experiment, laser pulses with a 357 MHz repetition
rate were accumulated and their power was enhanced by up to 250 times in the
Fabry-Perot optical resonant cavity. We succeeded in synchronizing the laser
pulses and colliding them with the 1.3 GeV electron beam in the ATF ring while
maintaining the laser pulse accumulation in the cavity. As a result, we
observed 26.0 +/- 0.1 photons per electron-laser pulse crossing, which
corresponds to a yield of 10^8 photons in a second.Comment: 3 pages, 5 figures, Preprint submitted to TIPP09 Proceedings in NIM
Vascular endothelial growth factor-C (VEGF-C) expression in human colorectal cancer tissues
Vascular endothelial growth factor-C (VEGF-C) functions specifically to induce lymphangiogenesis. We examined the relationship between expression of VEGF-C and clinicopathological features in patients with colorectal cancer. The expression of VEGF-C in the 99 primary tumours and 18 metastatic lymph nodes from colorectal cancer patients was examined immunohistochemically. To verify VEGF-C mRNA expression, reverse transcriptase-polymerase chain reaction (RT-PCR) was carried out. The expression of VEGF-C correlated with lymphatic involvement, lymph nodes metastasis, and depth of invasion. On the other hand, correlations were nil with regard to gender of the patients, histologic type, venous involvement, and liver metastasis. The expression of VEGF-C in metastatic lymph nodes was fairly consistent with this expression in the primary tumour. Survival time was shorter for VEGF-C positive groups than for VEGF-C negative ones, but with no statistically significant difference. RT-PCR findings revealed that the expression of VEGF-C mRNA correlated mostly with that of VEGF-C protein expression. VEGF-C may play an important role in lymphatic spread of colorectal cancer. © 2000 Cancer Research Campaig
- …