637 research outputs found
Ground--state energies and widths of He and Li
We extract energies and widths of the ground states of He and Li from
recent single--level R--matrix fits to the spectra of the H)He and the He)Li reactions. The widths
obtained differ significantly from the formal R--matrix values but they are
close to those measured as full widths at half maxima of the spectra in various
experiments. The energies are somewhat lower than those given by usual
estimates of the peak positions. The extracted values are close to the
S--matrix poles calculated previously from the multi--term analyses of the
N-He elastic scattering data.Comment: 3 pages, no figures, uses revtex.sty, accepted for publication in
PRC, uuencoded postscript and tex-files available at
ftp://is1.kph.tuwien.ac.at/pub/ohu/fwidth.u
E2 properties of nuclei far from stability and the proton-halo problem of 8B
E2 properties of A=6--10 nuclei, including those of nuclei far from
stability, are studied by a shell-model calculation which
includes E2 core-polarization effects explicitly. The quadrupole moments and
the E2 transition strengths in A=6--10 nuclei are described quite well by the
present calculation. This result indicates that the relatively large value of
the quadrupole moment of B can be understood without introducing the
proton-halo in B. An interesting effect of the
core-polarization is found for effective charges used in the
shell model; although isoscalar effective-charges are almost constant as a
function of nucleus, appreciable variations are needed for isovector
effective-charges which play important roles in nuclei with high
isospin-values.Comment: (LaTeX, 23 pages
Properties of Be and C deduced from the folding--potential model
The -- differential cross sections are analyzed in the
optical model using a double--folded potential. With the knowledge of this
potential bound and resonance--state properties of --cluster states in
Be and C as well as astrophysical S--factors of
He(,)Be and Be(,)C are
calculated. --widths and B(E2)--values are deduced.Comment: 2 pages LaTeX, 2 figures can be obtained from the author
Origin of three-body resonances
We expose the relation between the properties of the three-body continuum
states and their two-body subsystems. These properties refer to their bound and
virtual states and resonances, all defined as poles of the -matrix. For one
infinitely heavy core and two non-interacting light particles, the complex
energies of the three-body poles are the sum of the two two-body complex
pole-energies. These generic relations are modified by center-of-mass effects
which alone can produce a Borromean system. We show how the three-body states
evolve in He, Li, and Be when the nucleon-nucleon interaction is
continuously switched on. The schematic model is able to reproduce the main
properties in their spectra. Realistic calculations for these nuclei are shown
in detail for comparison. The implications of a core with non-zero spin are
investigated and illustrated for Ne (O+p+p). Dimensionless units
allow predictions for systems of different scales.Comment: 15 pages, 7 figure
Isospin Effects in Nuclear Multifragmentation
We develop an improved Statistical Multifragmentation Model that provides the
capability to calculate calorimetric and isotopic observables with precision.
With this new model we examine the influence of nuclear isospin on the fragment
elemental and isotopic distributions. We show that the proposed improvements on
the model are essential for studying isospin effects in nuclear
multifragmentation. In particular, these calculations show that accurate
comparisons to experimental data require that the nuclear masses, free energies
and secondary decay must be handled with higher precision than many current
models accord.Comment: 46 pages, 16 figure
Absorption in Ultra-Peripheral Nucleus-Atom Collisions in Crystal
The Glauber theory description of particle- and nucleus-crystal Coulomb
interactions at high-energy is developed. The allowance for the lattice thermal
vibrations is shown to produce strong absorption effect which is of prime
importance for quantitative understanding of the coherent Coulomb excitation of
ultra-relativistic particles and nuclei passing through the crystal.Comment: 8 pages, LaTe
The high-lying Li levels at excitation energy around 21 MeV
The H+He cluster structure in Li was investigated by the
H(,H He)n kinematically complete experiment at the incident
energy = 67.2 MeV. We have observed two resonances at =
21.30 and 21.90 MeV which are consistent with the He(H, )Li
analysis in the Ajzenberg-Selove compilation. Our data are compared with the
previous experimental data and the RGM and CSRGM calculations.Comment: 12 pages, 6 figures. Accepted for publication in J. Phys. Soc. Jp
4He decay of excited states in 14C
A study of the 7Li(9Be,4He 10Be)2H reaction at E{beam}=70 MeV has been
performed using resonant particle spectroscopy techniques and provides the
first measurements of alpha-decaying states in 14C. Excited states are observed
at 14.7, 15.5, 16.4, 18.5, 19.8, 20.6, 21.4, 22.4 and 24.0 MeV. The
experimental technique was able to resolve decays to the various particle bound
states in 10Be, and provides evidence for the preferential decay of the high
energy excited states into states in 10Be at ~6 MeV. The decay processes are
used to indicate the possible cluster structure of the 14C excited states.Comment: accepted for publication in PR
Direct radiative capture of p-wave neutrons
The neutron direct radiative capture (DRC) process is investigated,
highlighting the role of incident p-wave neutrons. A set of calculations is
shown for the 12-C(n,gamma) process at incoming neutron energies up to 500 keV,
a crucial region for astrophysics. The cross section for neutron capture
leading to loosely bound s, p and d orbits of 13-C is well reproduced by the
DRC model demonstrating the feasibility of using this reaction channel to study
the properties of nuclear wave functions on and outside the nuclear surface. A
sensitivity analysis of the results on the neutron-nucleus interaction is
performed for incident s- as well as p-waves. It turned out that the DRC cross
section for p-wave neutrons is insensitive to this interaction, contrary to the
case of incident s-wave neutrons.
PACS number(s): 25.40Lw,21.10Gv,23.40.HcComment: 16 pages, REVTeX file, PostScript file, .dvi fil
Shift of the 2 state of Be in the ternary cold fission of Cf
Recent experimental data indicate that in the ternary cold fission of
Cf the energy of the first excited state of the accompanying light
cluster Be is decreased by an amount ranging between 6 and 26
keV. A model is proposed to calculate the shift of the vibrational 2
state in Be when its heavy companions are the even-even nuclei
Ba and Sr. The stiffness parameters of the -vibrations
are calculated within the self-consistent Hartree-Fock method with BCS pairing
correlations taken into account, and its change is determined by the
interaction of the light cluster with the heavy fragments. The results are
pointing to a dependence of the shift magnitude and signature on the relative
distance between the three clusters and their mutual orientation. Eventually it
is the anharmonic perturbation of the spherical vibrator which is responsible
for obtaining a negative energy shift of the 2 state.Comment: 4 pages, 3 figure
- …