20 research outputs found

    Evaluation of coarse-grained mapping schemes for polysaccharide chains in cellulose

    Get PDF
    A fundamental understanding of the intermolecular forces that bind polysaccharide chains together in cellulose is crucial for designing efficient methods to overcome the recalcitrance of lignocellulosic biomass to hydrolysis. Because the characteristic time and length scales for the degradation of cellulose by enzymatic hydrolysis or chemical pretreatment span orders of magnitude, it is important to closely integrate the molecular models used at each scale so that, ultimately, one may switch seamlessly between quantum, atomistic, and coarse-grained descriptions of the system. As a step towards that goal, four multiscale coarse-grained models for polysaccharide chains in a cellulose-Iα microfiber are considered. Using the force matching method, effective coarse-grained forces are derived from all-atom trajectories. Performance of the coarse-grained models is evaluated by comparing the intrachain radial distribution functions with those obtained using the all-atom reference data. The all-atom simulation reveals a double peak in the radial distribution function for sites within each glucose residue that arises from the distinct conformations sampled by the primary alcohol group in the glucose residues. The three-site and four-site coarse-grained models have sufficient degrees of freedom to predict this double peak while the one-site and two-site models do not. This is the first time that coarse-grained models have been shown to reproduce such subtle, yet important, molecular features in a polysaccharide chain. The relative orientations between glucose residues along the polysaccharide chain are evaluated and it is found that the four-site coarse-grained model is best at reproducing the glucose-glucose conformations observed in the all-atom simulation. The success of the four-site coarse-grained model underscores the importance of decoupling the pyranose ring from the oxygen atom in the glycosidic bond when developing all-atom to coarse-grained mapping schemes for polysaccharides

    Ab Initio Study of Molecular Interactions in Cellulose Iα

    Get PDF
    Biomass recalcitrance, the resistance of cellulosic biomass to degradation, is due in part to the stability of the hydrogen bond network and stacking forces between the polysaccharide chains in cellulose microfibers. The fragment molecular orbital (FMO) method at the correlated Møller-Plesset second order perturbation level of theory was used on a model of the crystalline cellulose Iα core with a total of 144 glucose units. These computations show that the intersheet chain interactions are stronger than the intrasheet chain interactions for the crystalline structure, while they are more similar to each other for a relaxed structure. An FMO chain pair interaction energy decomposition analysis for both the crystal and relaxed structures reveals an intricate interplay between electrostatic, dispersion, charge transfer, and exchange repulsion effects. The role of the primary alcohol groups in stabilizing the interchain hydrogen bond network in the inner sheet of the crystal and relaxed structures of cellulose Iα, where edge effects are absent, was analyzed. The maximum attractive intrasheet interaction is observed for the GT-TG residue pair with one intrasheet hydrogen bond, suggesting that the relative orientation of the residues is as important as the hydrogen bond network in strengthening the interaction between the residues

    Implementation of Dynamical Nucleation Theory Effective Fragment Potentials Method for Modeling Aerosol Chemistry

    Get PDF
    In this work, the dynamical nucleation theory (DNT) model using the ab initio based effective fragment potential (EFP) is implemented for evaluating the evaporation rate constant and molecular properties of molecular clusters. Predicting the nucleation rates of aerosol particles in different chemical environments is a key step toward understanding the dynamics of complex aerosol chemistry. Therefore, molecular scale models of nanoclusters are required to understand the macroscopic nucleation process. On the basis of variational transition state theory, DNT provides an efficient approach to predict nucleation kinetics. While most DNT Monte Carlo simulations use analytic potentials to model critical sized clusters, or use ab initio potentials to model very small clusters, the DNTEFP Monte Carlo method presented here can treat up to critical sized clusters using the effective fragment potential (EFP), a rigorous nonempirical intermolecular model potential based on ab initio electronic structure theory calculations, improvable in a systematic manner. The DNTEFP method is applied to study the evaporation rates, energetics, and structure factors of multicomponent clusters containing water and isoprene. The most probable topology of the transition state characterizing the evaporation of one water molecule from a water hexamer at 243 K is predicted to be a conformer that contains six hydrogen bonds, with a topology that corresponds to two water molecules stacked on top of a quadrangular (H2O)4 cluster. For the water hexamer in the presence of isoprene, an increase in the cluster size and a 3-fold increase in the evaporation rate are predicted relative to the reaction in which one water molecule evaporates from a water hexamer cluster

    Effect of covalent links on the structure, spectra, and redox properties of myeloperoxidase - A density functional study.

    No full text
    The enzyme myeloperoxidase shows several unusual properties compared to other peroxidases, e.g. a red-shifted absorption spectrum and a peroxidase activity towards chloride. It has been suggested that this is caused by the unusual covalent links between the heme group and the surrounding protein, but whether it is caused by the two ester links to Glu-242 and Asp-94 or the sulfonium ion linkage to Met-243 is unclear. To investigate these suggestions, we have used density functional theory to study the structure, spectra, and reduction potential of 25 models of myeloperoxidase in the reduced (Fe(II)) and oxidized (Fe(III)) states, as well as in the compound I (formally Fe(V)O) and II (Fe(IV)O or Fe(IV)OH) states, using appropriate models of the linkages to the Asp, Glu, and Met residues (including the back-bone connection between Glu-242 and Met-243) in varying combinations. The calculated spectral shifts indicate that both the ester and sulfonium linkages play a role in the spectral shift. On the other hand, the sulfonium linkage seems to be mainly responsible for the high positive reduction potential for the both ferric/ferrous and compound I/II couples of myeloperoxidase

    Structural and photoluminescence properties of excited state intramolecular proton transfer capable compounds - Potential emissive and electron transport materials

    No full text
    Electronic factors influencing the photoluminescence properties and rates of excited state intramolecular proton transfer (ESIPT) reaction of o-hydroxy derivatives of 2,5-diphenyl-1,3,4-oxadiazole have been studied. The potential of these molecules as emissive and electron transport materials in designing improved organic light emitting diodes (OLEDs) has been studied by analyzing possible reasons for the unusually high Stokes shifts and ESIPT reaction rates. Time-dependent density functional theory (TDDFT) methods have been used to calculate the ground and excited state properties of the phototautomers that are the ESIPT reaction products. We study the relative effect of electron-withdrawing substituents on the proton-acceptor moiety and predict that the lowest ESIPT rate (1.9 x 10(11) s(-1)) is achieved with a dimethylamino substituent and that the Stokes shifts are around 11 000 cm(-1) for all three derivatives

    The role of axial ligands for the structure and function of chlorophylls

    No full text
    We have studied the effect of axial ligation of chlorophyll and bacteriochlorophyll using density functional calculations. Eleven different axial ligands have been considered, including models of histidine, aspartate/glutamate, asparagine/glutamine, serine, tyrosine, methionine, water, the protein backbone, and phosphate. The native chlorophylls, as well as their cation and anion radical states and models of the reaction centres P680 and P700, have been studied and we have compared the geometries, binding energies, reduction potentials, and absorption spectra. Our results clearly show that the chlorophylls strongly prefer to be five-coordinate, in accordance with available crystal structures. The axial ligands decrease the reduction potentials, so they cannot explain the high potential of P680. They also redshift the Q band, but not enough to explain the occurrence of red chlorophylls. However, there is some relation between the axial ligands and their location in the various photosynthetic proteins. In particular, the intrinsic reduction potential of the second molecule in the electron transfer path is always lower than that of the third one, a feature that may prevent back-transfer of the electron

    Role of Electronic Curve Crossing of Benzene S-1 State in the Photodissociation of Aryl Halides, Effect of Fluorination: RASSI-SO MS-CASPT2 Study

    No full text
    An ab initio study of the role of electronic curve crossing of benzene S-1 state in the photo dissociation dynamics of the iodobenzene and effect of fluorination is presented. Two dissociative life times observed in iodobenzene is attributed to the coupled repulsive potential energy curves of the low-lying n-sigma*, pi-sigma*, pi-pi* states. The direct channel is attributed to the alkyl like transition and the indirect channel is attributed to the mixing of the alkyl like transitions with the low lying benzene pi-pi* transitions. Fluorination of iodobenzene results in a substantial increase in the direct channel product. To analyze the possible role of electronic curve crossing of these transitions, potential energy curves of low-lying n-sigma*, pi-sigma*, pi-pi* states were studied including spin-orbit and relativistic effects using the Restricted Active Space state interaction multistate complete active space perturbation theory (RASSI-MS-CASPT2) method. Crossing behavior of spin-free and spin-orbit potential energy curves was analyzed for the role of the benzene S-1 state. Our results indicate the curve crossing region to be around 2.00-2.35 angstrom for both C6H5I and C6F5I. Analysis of effect of fluorination on the energies of states corresponding to benzene pi-pi* and n-sigma* transitions suggests an increase in the energy of benzene pi-pi* states and a decrease in the energy of the states corresponding to n-sigma* transitions. Increased spin-orbit gap, increased separation of the benzene S-1(pi-pi*) state and n-sigma* states in the region of curve crossing, lesser mixing of the pi-pi* and n-sigma* states, an order of magnitude decrease in the transition strength to the benzene singlet transition all contributed to the observed Substantial increase in the quantum yield of the direct channel product on fluorination of aryl halides. (c) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 109: 1962-1974, 200

    Implementation of Dynamical Nucleation Theory Effective Fragment Potentials Method for Modeling Aerosol Chemistry

    No full text
    In this work, the dynamical nucleation theory (DNT) model using the ab initio based effective fragment potential (EFP) is implemented for evaluating the evaporation rate constant and molecular properties of molecular clusters. Predicting the nucleation rates of aerosol particles in different chemical environments is a key step toward understanding the dynamics of complex aerosol chemistry. Therefore, molecular scale models of nanoclusters are required to understand the macroscopic nucleation process. On the basis of variational transition state theory, DNT provides an efficient approach to predict nucleation kinetics. While most DNT Monte Carlo simulations use analytic potentials to model critical sized clusters, or use ab initio potentials to model very small clusters, the DNTEFP Monte Carlo method presented here can treat up to critical sized clusters using the effective fragment potential (EFP), a rigorous nonempirical intermolecular model potential based on ab initio electronic structure theory calculations, improvable in a systematic manner. The DNTEFP method is applied to study the evaporation rates, energetics, and structure factors of multicomponent clusters containing water and isoprene. The most probable topology of the transition state characterizing the evaporation of one water molecule from a water hexamer at 243 K is predicted to be a conformer that contains six hydrogen bonds, with a topology that corresponds to two water molecules stacked on top of a quadrangular (H2O)4 cluster. For the water hexamer in the presence of isoprene, an increase in the cluster size and a 3-fold increase in the evaporation rate are predicted relative to the reaction in which one water molecule evaporates from a water hexamer cluster.Reprinted (adapted) with permission from Journal of Physical Chemistry A 115 (2011): 13987, doi:10.1021/jp207429r. Copyright 2011 American Chemical Society.</p
    corecore