4 research outputs found

    Neonatal and Pediatric Organ Donation: Ethical Perspectives and Implications for Policy

    Get PDF
    The lifesaving processes of organ donation and transplantation in neonatology and pediatrics carry important ethical considerations. The medical community must balance the principles of autonomy, nonmaleficence, beneficence, and justice to ensure the best interest of the potential donor and to provide equitable benefit to society. Accordingly, the US Organ Procurement and Transplantation Network (OPTN) has established procedures for the ethical allocation of organs depending on several donor-specific and recipient-specific factors. To maximize the availability of transplantable organs and opportunities for dying patients and families to donate, the US government has mandated that hospitals refer potential donors in a timely manner. Expedient investigation and diagnosis of brain death where applicable are also crucial, especially in neonates. Empowering trained individuals from organ procurement organizations to discuss organ donation with families has also increased rates of consent. Other efforts to increase organ supply include recovery from donors who die by circulatory criteria (DCDD) in addition to donation after brain death (DBD), and from neonates born with immediately lethal conditions such as anencephaly. Ethical considerations in DCDD compared to DBD include a potential conflict of interest between the dying patient and others who may benefit from the organs, and the precision of the declaration of death of the donor. Most clinicians and ethicists believe in the appropriateness of the Dead Donor Rule, which states that vital organs should only be recovered from people who have died. The medical community can maximize the interests of organ donors and recipients by observing the Dead Donor Rule and acknowledging the ethical considerations in organ donation

    Influence of PARP-1 Polymorphisms in Patients after Traumatic Brain Injury

    No full text
    Poly(ADP-ribose) polymerase-1 (PARP-1) plays an important role in the cellular response to stress and DNA damage. However, excessive activity of PARP-1 exacerbates brain injury via NAD+ depletion and energy failure. The purpose of this study was to determine if tagging single nucleotide polymorphisms (tSNPs) covering multiple regions of the PARP-1 gene are related to outcome after traumatic brain injury (TBI) in humans. DNA from 191 adult patients with severe TBI was assayed for four tSNPs corresponding to haplotype blocks spanning the PARP-1 gene. Categorization as favorable or poor outcome was based on Glasgow Outcome Scale (GOS) score assigned at 6 months. PARP-1 enzyme activity was indirectly evaluated by quantifying poly-ADP-ribose (PAR)-modified proteins in cerebrospinal fluid (CSF) using an enzyme-linked immunosorbent assay. In multiple logistic regression analysis controlling for age, initial Glasgow Coma Scale score, and gender, the AA genotype of SNP rs3219119 was an independent predictor of favorable neurologic outcome. This SNP tags a haplotype block spanning the automodification and catalytic domains of the PARP-1 gene. SNP rs2271347 correlated with CSF PAR-modified protein level. This SNP, which did not correlate with outcome, tags a haplotype block spanning the promoter region of the PARP-1 gene. We conclude that after severe TBI in humans, a PARP-1 polymorphism within the automodification-catalytic domain is associated with neurological outcome, while a polymorphism within the promoter region was associated with CSF PAR-modified protein level. These findings must be replicated in a prospective study before the relevance of PARP-1 polymorphisms after TBI can be established
    corecore