5 research outputs found
Metal and metal oxide nanomaterials for heavy metal remediation: novel approaches for selective, regenerative, and scalable water treatment
Heavy metal contamination in water sources poses a significant threat to environmental and public health, necessitating effective remediation strategies. Nanomaterial-based approaches have emerged as promising solutions for heavy metal removal, offering enhanced selectivity, efficiency, and sustainability compared to traditional methods. This comprehensive review explores novel nanomaterial-based approaches for heavy metal remediation, focusing on factors such as selectivity, regeneration, scalability, and practical considerations. A systematic literature search was conducted using multiple academic databases, including PubMed, Web of Science, and Scopus, to identify relevant articles published between 2013 and 2024. The review identifies several promising nanomaterials, such as graphene oxide, carbon nanotubes, and metal-organic frameworks, which exhibit high surface areas, tunable surface chemistries, and excellent adsorption capacities. Surface functionalization with specific functional groups (e.g., carboxyl, amino, thiol) significantly enhances the selectivity for target heavy metal ions. Advances in regeneration strategies, including chemical desorption, electrochemical regeneration, and photocatalytic regeneration, have improved the reusability and cost-effectiveness of these materials. Scalability remains a critical challenge, but recent developments in synthesis methods, such as green synthesis and continuous-flow synthesis, offer promising solutions for large-scale production. The stability and longevity of nanomaterials have been improved through surface modification and the development of hybrid nanocomposites. Integrating nanomaterials with existing water treatment infrastructure and combining them with other remediation techniques, such as membrane filtration and electrochemical methods, can enhance overall treatment efficiency and feasibility. In conclusion, nanomaterial-based approaches hold immense promise for revolutionizing heavy metal remediation and advancing sustainable water management practices. As future research is geared towards retrofitting existing treatment plants, it is equally critical to mitigate unintended environmental and public health consequences associated with the widespread production and use of nanomaterials, such as their leachability into water systems and environmental persistence
Nanoparticles for microbial control in water: mechanisms, applications, and ecological implications
Waterborne microbial contamination poses significant threats to public health and environmental sustainability. Traditional water treatment methods, while effective to a certain extent, are often limited in their ability to completely eradicate microbial pathogens and mitigate emerging challenges such as disinfection by-products and microbial resistance. In recent years, nanoparticles have emerged as promising candidates for microbial control in water treatment due to their unique physicochemical properties and antimicrobial efficacy. This review provides a comprehensive examination of the use of nanoparticles for microbial control in water treatment, focusing on their antimicrobial mechanisms, applications, and ecological implications. The review discusses the types of nanoparticles commonly used in water treatment, including silver nanoparticles, copper nanoparticles, titanium dioxide nanoparticles, and carbon-based nanoparticles, and examines their antimicrobial mechanisms, such as cell membrane damage, reactive oxygen species generation, and interference with microbial metabolic processes. Furthermore, the review explores the applications of nanoparticles in the disinfection of drinking water, wastewater treatment, water purification in remote areas, and biofilm control. Additionally, the ecological implications of nanoparticle-based water treatment, including nanoparticle release into the environment, environmental persistence, toxicity to non-target organisms, and regulatory challenges, are critically evaluated. Finally, future perspectives and challenges in nanoparticle-based water treatment, such as enhanced nanoparticle synthesis and stability, development of sustainable treatment technologies, integration with conventional methods, and addressing knowledge gaps, are discussed. Overall, this review provides valuable insights into the potential of nanoparticles as innovative tools for addressing microbial contamination in water treatment while highlighting the need for further research and sustainable practices to ensure their safe and effective implementation
Smart waste management: A paradigm shift enabled by artificial intelligence
Waste management poses a pressing global challenge, necessitating innovative solutions for resource optimization and sustainability. Traditional practices often prove insufficient in addressing the escalating volume of waste and its environmental impact. However, the advent of Artificial Intelligence (AI) technologies offers promising avenues for tackling the complexities of waste management systems. This review provides a comprehensive examination of AI’s role in waste management, encompassing collection, sorting, recycling, and monitoring. It delineates the potential benefits and challenges associated with each application while emphasizing the imperative for improved data quality, privacy measures, cost-effectiveness, and ethical considerations. Furthermore, future prospects for AI integration with the Internet of Things (IoT), advancements in machine learning, and the importance of collaborative frameworks and policy initiatives were discussed. In conclusion, while AI holds significant promise for enhancing waste management practices, addressing challenges such as data quality, privacy concerns, and cost implications is paramount. Through concerted efforts and ongoing research endeavors, the transformative potential of AI can be fully harnessed to drive sustainable and efficient waste management practices