929 research outputs found
Conversion of Aniline to Azobenzene at Functionalized Carbon Nanotubes: A Possible Case of a Nanodimensional Reaction
Aniline is oxidized to nitrosobenzene as the initial product, which undergoes further oxidation to nitrobenzene. The nitrosobenzene formation is catalyzed by functionalized multiwalled carbon nanotubes (CNT) followed by a coupling reaction between nitrosobenzene and aniline to produce azobenzene. This coupling requires close proximity of the reactants. It proceeds rapidly resulting in the UV-VIS absorption spectrum showing maxima at 327 nm and 425 nm. The nitrosobenzene yield in the presence of CNTs is controlled by the amount present in the medium. As the reaction is not catalyzed by unfunctionalized CNTs or graphitic particles, the uniqueness of the functionalized multiwalled CNTs in this catalysis suggests a nanodimensional reaction pathway
Bundling up carbon nanotubes through Wigner defects
We show, using ab initio total energy density functional theory, that the
so-called Wigner defects, an interstitial carbon atom right besides a vacancy,
which are present in irradiated graphite can also exist in bundles of carbon
nanotubes. Due to the geometrical structure of a nanotube, however, this defect
has a rather low formation energy, lower than the vacancy itself, suggesting
that it may be one of the most important defects that are created after
electron or ion irradiation. Moreover, they form a strong link between the
nanotubes in bundles, increasing their shear modulus by a sizeable amount,
clearly indicating its importance for the mechanical properties of nanotube
bundles.Comment: 5 pages and 4 figure
Spontaneous alloying in binary metal microclusters - A molecular dynamics study -
Microcanonical molecular dynamics study of the spontaneous alloying(SA),
which is a manifestation of fast atomic diffusion in a nano-sized metal
cluster, is done in terms of a simple two dimensional binary Morse model.
Important features observed by Yasuda and Mori are well reproduced in our
simulation. The temperature dependence and size dependence of the SA phenomena
are extensively explored by examining long time dynamics. The dominant role of
negative heat of solution in completing the SA is also discussed. We point out
that a presence of melting surface induces the diffusion of core atoms even if
they are solid-like. In other words, the {\it surface melting} at substantially
low temperature plays a key role in attaining the SA.Comment: 15 pages, 12 fgures, Submitted to Phys.Rev.
Size Effects in Carbon Nanotubes
The inter-shell spacing of multi-walled carbon nanotubes was determined by
analyzing the high resolution transmission electron microscopy images of these
nanotubes. For the nanotubes that were studied, the inter-shell spacing
is found to range from 0.34 to 0.39 nm, increasing with
decreasing tube diameter. A model based on the results from real space image
analysis is used to explain the variation in inter-shell spacings obtained from
reciprocal space periodicity analysis. The increase in inter-shell spacing with
decreased nanotube diameter is attributed to the high curvature, resulting in
an increased repulsive force, associated with the decreased diameter of the
nanotube shells.Comment: 4 pages. RevTeX. 4 figure
Quasi one dimensional He inside carbon nanotubes
We report results of diffusion Monte Carlo calculations for both He
absorbed in a narrow single walled carbon nanotube (R = 3.42 \AA) and strictly
one dimensional He. Inside the tube, the binding energy of liquid He is
approximately three times larger than on planar graphite. At low linear
densities, He in a nanotube is an experimental realization of a
one-dimensional quantum fluid. However, when the density increases the
structural and energetic properties of both systems differ. At high density, a
quasi-continuous liquid-solid phase transition is observed in both cases.Comment: 11 pages, 3ps figures, to appear in Phys. Rev. B (RC
Theoretical Study of One-dimensional Chains of Metal Atoms in Nanotubes
Using first-principles total-energy pseudopotential calculations, we have
studied the properties of chains of potassium and aluminum in nanotubes. For BN
tubes, there is little interaction between the metal chains and the tubes, and
the conductivity of these tubes is through carriers located at the inner part
of the tube. In contrast, for small radius carbon nanotubes, there are two
types of interactions: charge-transfer (dominant for alkali atoms) leading to
strong ionic cohesion, and hybridization (for multivalent metal atoms)
resulting in a smaller cohesion. For Al-atomic chains in carbon tubes, we show
that both effects contribute. New electronic properties related to these
confined atomic chains of metal are analyzed.Comment: 12 pages + 3 figure
Growth of carbon nanotubes on quasicrystalline alloys
We report on the synthesis of carbon nanotubes on quasicrystalline alloys.
Aligned multiwalled carbon nanotubes (MWNTs) on the conducting faces of
decagonal quasicrystals were synthesized using floating catalyst chemical vapor
deposition. The alignment of the nanotubes was found perpendicular to the
decagonal faces of the quasicrystals. A comparison between the growth and tube
quality has also been made between tubes grown on various quasicrystalline and
SiO2 substrates. While a significant MWNT growth was observed on decagonal
quasicrystalline substrate, there was no significant growth observed on
icosahedral quasicrystalline substrate. Raman spectroscopy and high resolution
transmission electron microscopy (HRTEM) results show high crystalline nature
of the nanotubes. Presence of continuous iron filled core in the nanotubes
grown on these substrates was also observed, which is typically not seen in
MWNTs grown using similar process on silicon and/or silicon dioxide substrates.
The study has important implications for understanding the growth mechanism of
MWNTs on conducting substrates which have potential applications as heat sinks
Structural stability and energetics of single-walled carbon nanotubes under uniaxial strain
A (10x10) single-walled carbon nanotube consisting of 400 atoms with 20
layers is simulated under tensile loading using our developed O(N) parallel
tight-binding molecular-dynamics algorithms. It is observed that the simulated
carbon nanotube is able to carry the strain up to 122% of the relaxed tube
length in elongation and up to 93% for compression. Young s modulus, tensile
strength, and the Poisson ratio are calculated and the values found are 0.311
TPa, 4.92 GPa, and 0.287, respectively. The stress-strain curve is obtained.
The elastic limit is observed at a strain rate of 0.09 while the breaking point
is at 0.23. The frequency of vibration for the pristine (10x10) carbon nanotube
in the radial direction is 4.71x10^3 GHz and it is sensitive to the strain
rate.Comment: 11 pages, 8 figure
- …