513 research outputs found

    Label-free as-grown double wall carbon nanotubes bundles for Salmonella typhimurium immunoassay

    Get PDF
    Background: A label-free immunosensor from as-grown double wall carbon nanotubes (DW) bundles was developed for detecting Salmonella typhimurium. The immunosensor was fabricated by using the as-grown DW bundles as an electrode material with an anti-Salmonella impregnated on the surface. The immunosensor was electrochemically characterized by cyclic voltammetry. The working potential (100, 200, 300 and 400 mV vs. Ag/AgCl) and the anti-Salmonella concentration (10, 25, 50, 75, and 100 μg/mL) at the electrode were subsequently optimized. Then, chronoamperometry was used with the optimum potential of 100 mV vs. Ag/AgCl) and the optimum impregnated anti-Salmonella of 10 μg/mL to detect S. typhimurium cells (0-109 CFU/mL). Results: The DW immunosensor exhibited a detection range of 102 to 107 CFU/mL for the bacteria with a limit of detection of 8.9 CFU/mL according to the IUPAC recommendation. The electrode also showed specificity to S. typhimurium but no current response to Escherichia coli. Conclusions: These findings suggest that the use of a label-free DW immunosensor is promising for detecting S. typhimurium

    Flexible and transparent supercapacitors and fabrication using thin film carbon electrodes with controlled morphologies

    Get PDF
    Mechanically flexible and optically transparent thin film solid state supercapacitors are fabricated by assembling nano-engineered carbon electrodes in porous templates. The electrodes have textured graphitic surface films with a morphology of interconnected arrays of complex shapes and porosity. The graphitic films act as both electrode and current collector, and when integrated with solid polymer electrolyte function as thin film supercapacitors. The nanostructured electrode morphology and conformal electrolyte packaging provide enough energy and power density for electronic devices in addition to possessing excellent mechanical flexibility and optical transparency

    Local charge transfer doping in suspended graphene nanojunctions

    Full text link
    We report electronic transport measurements in nanoscale graphene transistors with gold and platinum electrodes whose channel lengths are shorter than 100 nm, and compare them with transistors with channel lengths from 1 \textmu{}m to 50 \textmu{}m. We find a large positive gate voltage shift in charge neutrality point (NP) for transistors made with platinum electrodes but negligible shift for devices made with gold electrodes. This is consistent with the transfer of electrons from graphene into the platinum electrodes. As the channel length increases, the disparity between the measured NP using gold and platinum electrodes disappears.Comment: 11 pages, 3 figures, to appear in Appl. Phys. Let

    Second harmonic microscopy of monolayer MoS2

    Get PDF
    We show that the lack of inversion symmetry in monolayer MoS2 allows strong optical second harmonic generation. Second harmonic of an 810-nm pulse is generated in a mechanically exfoliated monolayer, with a nonlinear susceptibility on the order of 1E-7 m/V. The susceptibility reduces by a factor of seven in trilayers, and by about two orders of magnitude in even layers. A proof-of-principle second harmonic microscopy measurement is performed on samples grown by chemical vapor deposition, which illustrates potential applications of this effect in fast and non-invasive detection of crystalline orientation, thickness uniformity, layer stacking, and single-crystal domain size of atomically thin films of MoS2 and similar materials.Comment: 6 pages, 4 figure

    Molecular Simulation of MoS2 Exfoliation.

    Get PDF
    A wide variety of two-dimensional layered materials are synthesized by liquid-phase exfoliation. Here we examine exfoliation of MoS2 into nanosheets in a mixture of water and isopropanol (IPA) containing cavitation bubbles. Using force fields optimized with experimental data on interfacial energies between MoS2 and the solvent, multimillion-atom molecular dynamics simulations are performed in conjunction with experiments to examine shock-induced collapse of cavitation bubbles and the resulting exfoliation of MoS2. The collapse of cavitation bubbles generates high-speed nanojets and shock waves in the solvent. Large shear stresses due to the nanojet impact on MoS2 surfaces initiate exfoliation, and shock waves reflected from MoS2 surfaces enhance exfoliation. Structural correlations in the solvent indicate that shock induces an ice VII like motif in the first solvation shell of water

    Valley trion dynamics in monolayerï¾ MoSe2

    Get PDF
    Charged excitons called trions play an important role in the fundamental valley dynamics in newly emerging two-dimensional semiconductor materials. We use ultrafast pump-probe spectroscopy to study the valley trion dynamics in aï¾ MoSe2ï¾ monolayer grown by using chemical vapor deposition. The dynamics displays an ultrafast trion formation followed by a nonexponential decay. The measurements at different pump fluences show that the trion decay dynamics becomes slower as the excitation density increases. The observed trion dynamics and the associated density dependence are a result of the trapping by two defect states as being the dominating decay mechanism. The simulation based on a set of rate equations reproduces the experimental data for different pump fluences. Our results reveal the important trion dynamics and identify the trapping by defect states as the primary trion decay mechanism in monolayerï¾ MoSe2ï¾ under the excitation densities used in our experiment
    • …
    corecore