36 research outputs found
Benzyl Isothiocyanate Causes FoxO1-Mediated Autophagic Death in Human Breast Cancer Cells
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, inhibits growth of breast cancer cells but the mechanisms underlying growth inhibitory effect of BITC are not fully understood. Here, we demonstrate that BITC treatment causes FoxO1-mediated autophagic death in cultured human breast cancer cells. The BITC-treated breast cancer cells (MDA-MB-231, MCF-7, MDA-MB-468, BT-474, and BRI-JM04) and MDA-MB-231 xenografts from BITC-treated mice exhibited several features characteristic of autophagy, including appearance of double-membrane vacuoles (transmission electron microscopy) and acidic vesicular organelles (acridine orange staining), cleavage of microtubule-associated protein 1 light chain 3 (LC3), and/or suppression of p62 (p62/SQSTM1 or sequestosome 1) expression. On the other hand, a normal human mammary epithelial cell line (MCF-10A) was resistant to BITC-induced autophagy. BITC-mediated inhibition of MDA-MB-231 and MCF-7 cell viability was partially but statistically significantly attenuated in the presence of autophagy inhibitors 3-methyl adenine and bafilomycin A1. Stable overexpression of Mn-superoxide dismutase, which was fully protective against apoptosis, conferred only partial protection against BITC-induced autophagy. BITC treatment decreased phosphorylation of mTOR and its downstream targets (P70s6k and 4E-BP1) in cultured MDA-MB-231 and MCF-7 cells and MDA-MB-231 xenografts, but activation of mTOR by transient overexpression of its positive regulator Rheb failed to confer protection against BITC-induced autophagy. Autophagy induction by BITC was associated with increased expression and acetylation of FoxO1. Furthermore, autophagy induction and cell growth inhibition resulting from BITC exposure were significantly attenuated by small interfering RNA knockdown of FoxO1. In conclusion, the present study provides novel insights into the molecular circuitry of BITC-induced cell death involving FoxO1-mediated autophagy
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
Autophagy Induction by α-Santalol in Human Prostate Cancer Cells.
BACKGROUND/AIM: Previous studies have shown that the sandalwood oil constituent α-santalol inhibits growth of cultured human prostate cancer cells in vitro and PC-3 prostate cancer xenografts. Along with the studies from our laboratory, it is well established that α-santalol targets the phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT serine/ threonine kinase 1 (AKT) pathway to induce apoptosis but its growth-suppressive effects have not been fully elucidated. The current study was undertaken to investigate the role of autophagy in α-santalol-induced prostate cancer cell death.
MATERIALS AND METHODS: Cell lines LNCaP and PC-3 were maintained in an atmosphere of 95% air and 5% CO2 at 37°C. Trypan blue dye exclusion assay was employed to assess the effects of α-santalol with/without 3-methyl adenine on the cell viability of prostate cancer cells. Acidic vesicular organelles induced by α-santalol treatment were detected by staining with acridine orange. Immunofluorescence and immunoblotting were performed to analyze expression of proteins involved in the AKT-mammalian target of rapamycin (mTOR) pathway.
RESULTS: LNCaP and PC-3 cells upon treatment with α-santalol resulted in characteristic features analogous to autophagic response, including formation of acidic vesicular organelles, recruitment and cleavage of microtubule-associated protein 1 light chain 3 (LC3) to autophagosomes. Alpha-santalol treatment further suppressed phosphorylation of activated AKT and mTOR, which are critical regulators of autophagic response. In addition, pre-treatment of PC-3 cells with specific inhibitor of autophagy (3-methyladenine) and co-treatment with α-santalol attenuated the expression of LC3-II and phospho-AKT, and significantly reduced the cell viability.
CONCLUSION: The present study indicates that α-santalol induces autophagy by targeting the AKT-mTOR pathway in prostate cancer cells, which may serve as a protective mechanism
Role of autophagic response induced by major phytochemicals in cancer prevention and treatment
Phytochemicals derived from dietary sources and natural products have gained significant attention in the scientific community due to their ability to modulate various pharmacological and biological activities. Understanding the molecular mechanisms by which natural products protect against various diseases including cancer will provide the basis for both clinical use and further chemical modification to develop targeted therapy. Autophagy, an evolutionarily conserved self-digestion process that employs lysosomal-mediated enzymatic degradation has a functional role in a wide range of pathological disorders, and has attracted oncology scientists over the past two decades. Studies employing natural products have shown that induction of autophagy may be either cytoprotective or cytotoxic governed by different molecular pathways. In this review, we summarize four major phytochemicals namely phenethyl isothiocyanate, capsaicin, withaferin A, genistein and their association with autophagy in cancer chemoprevention. We also discuss ideas for further investigation essential to understanding their mechanisms, which will guide their clinical applications for cancer prevention and treatment
Antineoplastic effects of α-santalol on estrogen receptor-positive and estrogen receptor-negative breast cancer cells through cell cycle arrest at G2/M phase and induction of apoptosis.
Anticancer efficacy and the mechanism of action of α-santalol, a terpenoid isolated from sandalwood oil, were investigated in human breast cancer cells by using p53 wild-type MCF-7 cells as a model for estrogen receptor (ER)-positive and p53 mutated MDA-MB-231 cells as a model for ER-negative breast cancer. α-Santalol inhibited cell viability and proliferation in a concentration and time-dependent manner in both cells regardless of their ER and/or p53 status. However, α-santalol produced relatively less toxic effect on normal breast epithelial cell line, MCF-10A. It induced G2/M cell cycle arrest and apoptosis in both MCF-7 and MDA-MB-231 cells. Cell cycle arrest induced by α-santalol was associated with changes in the protein levels of BRCA1, Chk1, G2/M regulatory cyclins, Cyclin dependent kinases (CDKs), Cell division cycle 25B (Cdc25B), Cdc25C and Ser-216 phosphorylation of Cdc25C. An up-regulated expression of CDK inhibitor p21 along with suppressed expression of mutated p53 was observed in MDA-MB-231 cells treated with α-santalol. On the contrary, α-santalol did not increase the expression of wild-type p53 and p21 in MCF-7 cells. In addition, α-santalol induced extrinsic and intrinsic pathways of apoptosis in both cells with activation of caspase-8 and caspase-9. It led to the activation of the executioner caspase-6 and caspase-7 in α-santalol-treated MCF-7 cells and caspase-3 and caspase-6 in MDA-MB-231 cells along with strong cleavage of poly(ADP-ribose) polymerase (PARP) in both cells. Taken together, this study for the first time identified strong anti-neoplastic effects of α-santalol against both ER-positive and ER-negative breast cancer cells