4 research outputs found

    Synthesis of hierarchical wo3 microspheres for photoelectrochemical water splitting application

    Get PDF
    In this work, hierarchical WO3 microspheres were synthesized using chemical bath deposition. The morphology of the synthesized sample was studied using scanning electron microscopy (SEM). The hierarchical WO3 microspheres formed from spontaneously self-assembled nanosheets have a high specific surface area. Structural characterizations of sample were performed using X-ray diffraction (XRD) and Raman spectroscopy. Analysis of XRD spectra showed that synthesized particles have a monoclinic modification. The optical properties of the sample were studied using UV-Vis diffuse reflectance absorption spectra. The value of the energy gap calculated from the absorption spectra is 2.2 eV, which indicates high light absorption ability. A photocurrent study was done to investigate the photocatalytic activity. The photoelectrode was prepared using hierarchical WO3 microspheres and polymer deposited on fluorine doped tin oxide (FTO) glass via spin coating technique. A remarkable photocurrent density of 18 A/cm2 at 0.5 V was achieved. The elongated structures improved light absorption ability and photocatalytic activity

    PHOTOACTIVE TUNGSTEN-OXIDE NANOMATERIALS FOR WATER-SPLITTING

    No full text
    This review focuses on tungsten oxide (WO3) and its nanocomposites as photoactive nanomaterials for photoelectrochemical cell (PEC) applications since it possesses exceptional properties such as photostability, high electron mobility (~12 cm2 V −1 s −1 ) and a long hole-diffusion length (~150 nm). Although WO3 has demonstrated oxygen-evolution capability in PEC, further increase of its PEC efficiency is limited by high recombination rate of photogenerated electron/hole carriers and slow charge transfer at the liquid–solid interface. To further increase the PEC efficiency of the WO3 photocatalyst, designing WO3 nanocomposites via surface–interface engineering and doping would be a great strategy to enhance the PEC performance via improving charge separation. This review starts with the basic principle of water-splitting and physical chemistry properties of WO3, that extends to various strategies to produce binary/ternary nanocomposites for PEC, particulate photocatalysts, Z-schemes and tandem-cell applications. The effect of PEC crystalline structure and nanomorphologies on efficiency are included. For both binary and ternary WO3 nanocomposite systems, the PEC performance under different conditions—including synthesis approaches, various electrolytes, morphologies and applied bias—are summarized. At the end of the review, a conclusion and outlook section concluded the WO3 photocatalyst-based system with an overview of WO3 and their nanocomposites for photocatalytic applications and provided the readers with potential research directions

    EFFECT OF SYNTHESIS METHOD PARAMETERS ON THE PHOTOCATALYTIC ACTIVITY OF TUNGSTEN OXIDE NANOPLATES

    No full text
    A simple chemical bath deposition method has been developed to study the formation of nanoplate morphology of tungsten oxide. The obtained materials were characterized by field emission scanning electron microscopy, transmission electron microscopy, x-ray diffractometry, Raman spectroscopy, and UV–vis diffuse reflectance spectroscopy. The photocatalytic activity of the resulting samples was further evaluated by degradation of Rhodamine B under light irradiation. It was found that both synthesis parameters and morphology affected the tungsten oxide photocatalytic activity. Tungsten oxide nanoplates obtained by a simple chemical bath deposition method have demonstrated a higher specific area and higher photocatalytic activity compared to the nanopowders obtained by the hydrothermal metho

    Synthesis and in situ oxidation of copper micro- and nanoparticles by arc discharge plasma in liquid

    No full text
    Abstract This work presents a one-step controlled method for the synthesis of copper oxide nanoparticles using an arc discharge in deionized water without subsequent thermal annealing. The synthesis conditions were varied by changing the arc discharge current from 2 to 4 A. Scanning electron microscopy images of samples synthesized at discharge current of 2 A revealed the formation of tenorite (CuO) nanopetals with an average length of 550 nm and a width of 100 nm, which had a large surface area. Arc discharge synthesis at 3 and 4 A current modes provides the formation of a combination of CuO nanopetals with spherical cuprite (Cu2O) nanoparticles with sizes ranging from 30 to 80 nm. The crystalline phase and elemental composition of the synthesized particles were identified by X-ray diffraction analysis, Raman spectroscopy and Energy dispersive analysis. As the arc discharge current was raised from 2 to 4 A, two notable changes occurred in the synthesized particles: the Cu/O ratio increased, and the particle sizes decreased. At 4 A, the synthesized particles were from 30 to 80 nm in size and had a spherical shape, indicating an increase in the amount of cuprite (Cu2O) phase. The optical band gap of the aqueous solutions of copper oxide particles also increased from 2 to 2.34 eV with increasing synthesis current from 2 to 4 A, respectively. This suggests that the proposed synthesis method can be used to tune the band gap of the final material by controlling the Cu/O ratio through the current of arc discharge. Overall, this work demonstrates a novel approach to the synthesis of copper oxide nanoparticles with controllable CuO/Cu2O/Cu ratios, which has the potential to be useful in a variety of applications, particularly due to the significant enhancement of photocatalytic abilities and widen the working spectral range
    corecore