447 research outputs found

    On Monotonicity and Propagation of Order Properties

    Full text link
    In this paper, a link between monotonicity of deterministic dynamical systems and propagation of order by Markov processes is established. The order propagation has received considerable attention in the literature, however, this notion is still not fully understood. The main contribution of this paper is a study of the order propagation in the deterministic setting, which potentially can provide new techniques for analysis in the stochastic one. We take a close look at the propagation of the so-called increasing and increasing convex orders. Infinitesimal characterisations of these orders are derived, which resemble the well-known Kamke conditions for monotonicity. It is shown that increasing order is equivalent to the standard monotonicity, while the class of systems propagating the increasing convex order is equivalent to the class of monotone systems with convex vector fields. The paper is concluded by deriving a novel result on order propagating diffusion processes and an application of this result to biological processes.Comment: Part of the paper is to appear in American Control Conference 201

    On Projection-Based Model Reduction of Biochemical Networks-- Part I: The Deterministic Case

    Full text link
    This paper addresses the problem of model reduction for dynamical system models that describe biochemical reaction networks. Inherent in such models are properties such as stability, positivity and network structure. Ideally these properties should be preserved by model reduction procedures, although traditional projection based approaches struggle to do this. We propose a projection based model reduction algorithm which uses generalised block diagonal Gramians to preserve structure and positivity. Two algorithms are presented, one provides more accurate reduced order models, the second provides easier to simulate reduced order models. The results are illustrated through numerical examples.Comment: Submitted to 53rd IEEE CD

    On Projection-Based Model Reduction of Biochemical Networks-- Part II: The Stochastic Case

    Full text link
    In this paper, we consider the problem of model order reduction of stochastic biochemical networks. In particular, we reduce the order of (the number of equations in) the Linear Noise Approximation of the Chemical Master Equation, which is often used to describe biochemical networks. In contrast to other biochemical network reduction methods, the presented one is projection-based. Projection-based methods are powerful tools, but the cost of their use is the loss of physical interpretation of the nodes in the network. In order alleviate this drawback, we employ structured projectors, which means that some nodes in the network will keep their physical interpretation. For many models in engineering, finding structured projectors is not always feasible; however, in the context of biochemical networks it is much more likely as the networks are often (almost) monotonic. To summarise, the method can serve as a trade-off between approximation quality and physical interpretation, which is illustrated on numerical examples.Comment: Submitted to the 53rd CD

    Geometric Properties of Isostables and Basins of Attraction of Monotone Systems

    Get PDF
    In this paper, we study geometric properties of basins of attraction of monotone systems. Our results are based on a combination of monotone systems theory and spectral operator theory. We exploit the framework of the Koopman operator, which provides a linear infinite-dimensional description of nonlinear dynamical systems and spectral operator-theoretic notions such as eigenvalues and eigenfunctions. The sublevel sets of the dominant eigenfunction form a family of nested forward-invariant sets and the basin of attraction is the largest of these sets. The boundaries of these sets, called isostables, allow studying temporal properties of the system. Our first observation is that the dominant eigenfunction is increasing in every variable in the case of monotone systems. This is a strong geometric property which simplifies the computation of isostables. We also show how variations in basins of attraction can be bounded under parametric uncertainty in the vector field of monotone systems. Finally, we study the properties of the parameter set for which a monotone system is multistable. Our results are illustrated on several systems of two to four dimensions.Comment: 12 pages, to appear in IEEE Transaction on Automatic Contro

    Operator-Theoretic Characterization of Eventually Monotone Systems

    Full text link
    Monotone systems are dynamical systems whose solutions preserve a partial order in the initial condition for all positive times. It stands to reason that some systems may preserve a partial order only after some initial transient. These systems are usually called eventually monotone. While monotone systems have a characterization in terms of their vector fields (i.e. Kamke-Muller condition), eventually monotone systems have not been characterized in such an explicit manner. In order to provide a characterization, we drew inspiration from the results for linear systems, where eventually monotone (positive) systems are studied using the spectral properties of the system (i.e. Perron-Frobenius property). In the case of nonlinear systems, this spectral characterization is not straightforward, a fact that explains why the class of eventually monotone systems has received little attention to date. In this paper, we show that a spectral characterization of nonlinear eventually monotone systems can be obtained through the Koopman operator framework. We consider a number of biologically inspired examples to illustrate the potential applicability of eventual monotonicity.Comment: 13 page

    Block Factor-width-two Matrices and Their Applications to Semidefinite and Sum-of-squares Optimization

    Full text link
    Semidefinite and sum-of-squares (SOS) optimization are fundamental computational tools in many areas, including linear and nonlinear systems theory. However, the scale of problems that can be addressed reliably and efficiently is still limited. In this paper, we introduce a new notion of \emph{block factor-width-two matrices} and build a new hierarchy of inner and outer approximations of the cone of positive semidefinite (PSD) matrices. This notion is a block extension of the standard factor-width-two matrices, and allows for an improved inner-approximation of the PSD cone. In the context of SOS optimization, this leads to a block extension of the \emph{scaled diagonally dominant sum-of-squares (SDSOS)} polynomials. By varying a matrix partition, the notion of block factor-width-two matrices can balance a trade-off between the computation scalability and solution quality for solving semidefinite and SOS optimization. Numerical experiments on large-scale instances confirm our theoretical findings.Comment: 26 pages, 5 figures. Added a new section on the approximation quality analysis using block factor-width-two matrices. Code is available through https://github.com/zhengy09/SDPf

    Shaping Pulses to Control Bistable Monotone Systems Using Koopman Operator

    Get PDF
    In this paper, we further develop a recently proposed control method to switch a bistable system between its steady states using temporal pulses. The motivation for using pulses comes from biomedical and biological applications (e.g. synthetic biology), where it is generally difficult to build feedback control systems due to technical limitations in sensing and actuation. The original framework was derived for monotone systems and all the extensions relied on monotone systems theory. In contrast, we introduce the concept of switching function which is related to eigenfunctions of the so-called Koopman operator subject to a fixed control pulse. Using the level sets of the switching function we can (i) compute the set of all pulses that drive the system toward the steady state in a synchronous way and (ii) estimate the time needed by the flow to reach an epsilon neighborhood of the target steady state. Additionally, we show that for monotone systems the switching function is also monotone in some sense, a property that can yield efficient algorithms to compute it. This observation recovers and further extends the results of the original framework, which we illustrate on numerical examples inspired by biological applications.Comment: 7 page

    Distributed Reconstruction of Nonlinear Networks: An ADMM Approach

    Full text link
    In this paper, we present a distributed algorithm for the reconstruction of large-scale nonlinear networks. In particular, we focus on the identification from time-series data of the nonlinear functional forms and associated parameters of large-scale nonlinear networks. Recently, a nonlinear network reconstruction problem was formulated as a nonconvex optimisation problem based on the combination of a marginal likelihood maximisation procedure with sparsity inducing priors. Using a convex-concave procedure (CCCP), an iterative reweighted lasso algorithm was derived to solve the initial nonconvex optimisation problem. By exploiting the structure of the objective function of this reweighted lasso algorithm, a distributed algorithm can be designed. To this end, we apply the alternating direction method of multipliers (ADMM) to decompose the original problem into several subproblems. To illustrate the effectiveness of the proposed methods, we use our approach to identify a network of interconnected Kuramoto oscillators with different network sizes (500~100,000 nodes).Comment: To appear in the Preprints of 19th IFAC World Congress 201
    • …
    corecore