3 research outputs found

    Small-Object Detection for UAV-Based Images Using a Distance Metric Method

    No full text
    Object detection is important in unmanned aerial vehicle (UAV) reconnaissance missions. However, since a UAV flies at a high altitude to gain a large reconnaissance view, the captured objects often have small pixel sizes and their categories have high uncertainty. Given the limited computing capability on UAVs, large detectors based on convolutional neural networks (CNNs) have difficulty obtaining real-time detection performance. To address these problems, we designed a small-object detector for UAV-based images in this paper. We modified the backbone of YOLOv4 according to the characteristics of small-object detection. We improved the performance of small-object positioning by modifying the positioning loss function. Using the distance metric method, the proposed detector can classify trained and untrained objects through object features. Furthermore, we designed two data augmentation strategies to enhance the diversity of the training set. We evaluated our method on a collected small-object dataset; the proposed method obtained 61.00% mAP50 on trained objects and 41.00% mAP50 on untrained objects with 77 frames per second (FPS). Flight experiments confirmed the utility of our approach on small UAVs, with satisfying detection performance and real-time inference speed

    A Low-Altitude Obstacle Avoidance Method for UAVs Based on Polyhedral Flight Corridor

    No full text
    UAVs flying in complex low-altitude environments often require real-time sensing to avoid environmental obstacles. In previous approaches, UAVs have usually carried out motion planning based on primitive navigation maps such as point clouds and raster maps to achieve autonomous obstacle avoidance. However, due to the huge amount of data in these raw navigation maps and the highly discrete map information, the efficiency of solving the UAV’s real-time trajectory optimization is low, making it difficult to meet the demand for efficient online motion planning. A flight corridor is a series of unobstructed continuous areas and has convex properties. The flight corridor can be used as a simple parametric representation to characterize the safe flight space in the environment, and used as the cost of the collision term in the trajectory back-end optimization for trajectory solving, which can improve the efficiency of real-time trajectory solving and ensure flight safety. Therefore, this paper focuses on the construction of safe flight corridors for UAVs and autonomous obstacle avoidance algorithms for UAVs based on safe flight corridors, based on a rotary-wing UAV platform, and proposes a polyhedral flight corridor construction algorithm and realizes autonomous obstacle avoidance for UAVs based on the constructed flight corridors

    Multi-Target Association for UAVs Based on Triangular Topological Sequence

    No full text
    Multi-UAV cooperative systems are highly regarded in the field of cooperative multi-target localization and tracking due to their advantages of wide coverage and multi-dimensional perception. However, due to the similarity of target visual characteristics and the limitation of UAV sensor resolution, it is difficult for UAVs to correctly distinguish targets that are visually similar to their associations. Incorrect correlation matching between targets will result in incorrect localization and tracking of multiple targets by multiple UAVs. In order to solve the association problem of targets with similar visual characteristics and reduce the localization and tracking errors caused by target association errors, based on the relative positions of the targets, the paper proposes a globally consistent target association algorithm for multiple UAV vision sensors based on triangular topological sequences. In contrast to Siamese neural networks and trajectory correlation, the relative position relationship between targets is used to distinguish and correlate targets with similar visual features and trajectories. The sequence of neighboring triangles of targets is constructed using the relative position relationship, and the feature is a specific triangular network. Moreover, a method for calculating topological sequence similarity with similar transformation invariance is proposed, as well as a two-step optimal association method that considers global objective association consistency. The results of flight experiments indicate that the algorithm achieves an association accuracy of 84.63%, and that two-step association is 12.83% more accurate than single-step association. Through this work, the multi-target association problem with similar or even identical visual characteristics can be solved in the task of cooperative surveillance and tracking of suspicious vehicles on the ground by multiple UAVs
    corecore