34 research outputs found
Gęste mapowanie regionu VNTR genu insuliny w zespole policystycznych jajników w populacji kobiet z Europy Środkowej
Introduction: Insulin gene VNTR was associated with polycystic ovary syndrome (PCOS) in some studies but not in others. This couldb be due to the heterogeneity of the definition of PCOS and/or the use of inappropriate gene mapping strategies.Material and methods: In this investigation, the association of VNTR with PCOS was explored in a population of women from Central Europe (377 cases and 105 controls) in whom PCOS was diagnosed according to Rotterdam criteria. Seven SNPs: rs3842756 (G/A), rs3842755 (G/T), rs3842754 (C/T), rs3842753 (A/C), rs3842752 (C/T), rs3842748 (G/C), and rs689 (T/A) were genotyped in a portion of the population (160 cases and 95 controls) by sequencing or by SSO-PCR. Analysis of linkage disequilibrium (LD) pattern allowed selecting three tagSNPs (rs3842754, rs3842748, and rs689), which were genotyped in the rest of the population by KASPar.Results: Six haplotypes were reconstructed, among which three (h1, h2 and h6) were more frequent. Statistical analysis allowed observation of the association of the SNP rs3842748, through its GC genotype, with obesity in PCOS (P = 0.049; OR CI95% 1,59 [1.00–2.51]) and in classical PCOS (YPCOS) (P = 0.010), as well as the correlation of the SNP rs689 and the pair of haplotypes h1/h1 with higher levels of testosteronaemia in the PCOS group, although this was at the limit of significance (P = 0.054)Conclusion: These results are in accordance with some studies in literature and highlight the role of insulin gene VNTR in complex metabolic disorders. (Endokrynol Pol 2015; 66 (3): 198–206)Wstęp: W niektórych badaniach, zmienna liczba powtórzeń tandemowych (VNTR) genu insuliny była związana z zespołem policystycznych jajników (PCOS), lecz w innych taki związek nie występował. Mogło tak być z powodu heterogeniczności definicji PCOS i/lub stosowania nieprawidłowych strategii mapowania genów.Materiał i metody: W niniejszym badaniu, związek VNTR z PCOS zbadano w populacji kobiet pochodzących z Europy Środkowej (377 przypadków chorobowych oraz 105 osób kontrolnych), u których zdiagnozowano PCOS według kryteriów rotterdamskich. Siedem polimorfizmów pojedynczego nukleotydu (SNP): rs3842756 (G/A), rs3842755 (G/T), rs3842754 (C/T), rs3842753 (A/C), rs3842752 (C/T), rs3842748 (G/C), oraz rs689 (T/A) wytypowano w części populacji (160 przypadków chorobowych i 95 osób kontrolnych) poprzez sekwencjonowanie lub SSO-PCR. Analiza wzoru niezrównoważenia sprzężeń (LD) pozwoliła na selekcję trzech SNP znacznikowych (tagSNP) (rs3842754, rs3842748 i rs689), które wyselekcjonowano w pozostałej części populacji metodą KASPar.Wyniki: Sześć haplotypów odtworzono, z których 3 (h1, h2 i h6) występowały częściej. Analiza statystyczna pozwoliła na obserwację związku SNP rs3842748, poprzez genotyp GC, z otyłością w PCOS (P = 0,049; OR CI 95% 1,59 [1,00–2,51]) i klasycznym PCOS (YPCOS) (P = 0,010), jak również korelacji SNP rs689 i pary haplotypów h1/h1 z wyższym stężeniem testosteronemii w grupie PCOS, chociaż wynik ten znajdował się na granicy istotności (P = 0,054).Wnioski: Powyższe wyniki są zgodne z niektórymi badaniami w piśmiennictwie i podkreślają role VNTR genu insuliny w złożonych zaburzeniach metabolicznych. (Endokrynol Pol 2015; 66 (3): 198–206
A novel CISD2 mutation associated with a classical Wolfram syndrome phenotype alters Ca2+ homeostasis and ER-mitochondria interactions.
Wolfram syndrome (WS) is a progressive neurodegenerative disease characterized by early-onset optic atrophy and diabetes mellitus, which can be associated with more extensive central nervous system and endocrine complications. The majority of patients harbour pathogenic WFS1 mutations, but recessive mutations in a second gene, CISD2, have been described in a small number of families with Wolfram syndrome type 2 (WFS2). The defining diagnostic criteria for WFS2 also consist of optic atrophy and diabetes mellitus, but unlike WFS1, this phenotypic subgroup has been associated with peptic ulcer disease and an increased bleeding tendency. Here, we report on a novel homozygous CISD2 mutation (c.215A > G; p.Asn72Ser) in a Moroccan patient with an overlapping phenotype suggesting that Wolfram syndrome type 1 and type 2 form a continuous clinical spectrum with genetic heterogeneity. The present study provides strong evidence that this particular CISD2 mutation disturbs cellular Ca2+ homeostasis with enhanced Ca2+ flux from the ER to mitochondria and cytosolic Ca2+ abnormalities in patient-derived fibroblasts. This Ca2+ dysregulation was associated with increased ER-mitochondria contact, a swollen ER lumen and a hyperfused mitochondrial network in the absence of overt ER stress. Although there was no marked alteration in mitochondrial bioenergetics under basal conditions, culture of patient-derived fibroblasts in glucose-free galactose medium revealed a respiratory chain defect in complexes I and II, and a trend towards decreased ATP levels. Our results provide important novel insight into the potential disease mechanisms underlying the neurodegenerative consequences of CISD2 mutations and the subsequent development of multisystemic disease
A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement.
Mitochondrial DNA instability disorders are responsible for a large clinical spectrum, among which amyotrophic lateral sclerosis-like symptoms and frontotemporal dementia are extremely rare. We report a large family with a late-onset phenotype including motor neuron disease, cognitive decline resembling frontotemporal dementia, cerebellar ataxia and myopathy. In all patients, muscle biopsy showed ragged-red and cytochrome c oxidase-negative fibres with combined respiratory chain deficiency and abnormal assembly of complex V. The multiple mitochondrial DNA deletions found in skeletal muscle revealed a mitochondrial DNA instability disorder. Patient fibroblasts present with respiratory chain deficiency, mitochondrial ultrastructural alterations and fragmentation of the mitochondrial network. Interestingly, expression of matrix-targeted photoactivatable GFP showed that mitochondrial fusion was not inhibited in patient fibroblasts. Using whole-exome sequencing we identified a missense mutation (c.176C>T; p.Ser59Leu) in the CHCHD10 gene that encodes a coiled-coil helix coiled-coil helix protein, whose function is unknown. We show that CHCHD10 is a mitochondrial protein located in the intermembrane space and enriched at cristae junctions. Overexpression of a CHCHD10 mutant allele in HeLa cells led to fragmentation of the mitochondrial network and ultrastructural major abnormalities including loss, disorganization and dilatation of cristae. The observation of a frontotemporal dementia-amyotrophic lateral sclerosis phenotype in a mitochondrial disease led us to analyse CHCHD10 in a cohort of 21 families with pathologically proven frontotemporal dementia-amyotrophic lateral sclerosis. We identified the same missense p.Ser59Leu mutation in one of these families. This work opens a novel field to explore the pathogenesis of the frontotemporal dementia-amyotrophic lateral sclerosis clinical spectrum by showing that mitochondrial disease may be at the origin of some of these phenotypes
DETERMINISME GENETIQUE DE LA RESISTANCE A L'INSULINE (IDENTIFICATION DE DEFAUTS MOLECULAIRES DANS LE SYNDROME DES OVAIRES POLYKYSTIQUES, L'OBESITE ET LE DIABETE SUCRE (DOCTORAT : ENDOCRINOLOGIE ET BIOLOGIE MOLECULAIRE))
ST ETIENNE-BU Médecine (422182102) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF
Leptin treatment markedly increased plasma adiponectin but barely decreased plasma resistin of ob/ob mice
Adiponectin (ApN) and leptin are two adipocytokines that control fuel homeostasis, body weight, and insulin sensitivity. Their interplay is still poorly studied. These hormones are either undetectable or decreased in obese, diabetic ob/ob mice. We examined the effects of leptin treatment on ApN gene expression, protein production, secretion, and circulating levels of ob/ob mice. We also briefly tackled the influence of this treatment on resistin, another adipocytokine involved in obesity-related insulin resistance. Leptin-treated (T) obese mice (continuous sc infusion for 6 days) were compared with untreated lean (L), untreated obese (O), and untreated pair-fed obese (PF) mice. Blood was collected throughout the study. At day 3 or day 6, fat pads were either directly analyzed (mRNA, ApN content) or cultured for up to 24 h (ApN secretion). The direct effect of leptin was also studied in 3T3-F442A adipocytes. Compared with L mice, ApN content of visceral or subcutaneous fat and ApN secretion by adipose explants were blunted in obese mice. Accordingly, plasma ApN levels of O mice were decreased by 50%. Leptin treatment of ob/ob mice increased ApN mRNAs, ApN content, and secretion from the visceral depot by 50-80%. Leptin also directly stimulated ApN mRNAs and secretion from 3T3-F442A adipocytes. After 6 days of treatment, plasma ApN of ob/ob mice increased 2.5-fold, a rise that did not occur in PF mice. Plasma resistin of T mice was barely decreased. Leptin treatment, but not mere calorie restriction, corrects plasma ApN in obese mice by restoring adipose tissue ApN concentrations and secretion, at least in part, via a direct stimulation of ApN gene expression. Such a treatment only minimally affects circulating resistin. ApN restoration could, in concert with leptin, contribute to the metabolic effects classically observed during leptin administration
Leptin treatment markedly increased plasma adiponectin but barely decreased plasma resistin of ob/ob
A Survey of Autoencoder Algorithms to Pave the Diagnosis of Rare Diseases
Rare diseases (RDs) concern a broad range of disorders and can result from various origins. For a long time, the scientific community was unaware of RDs. Impressive progress has already been made for certain RDs; however, due to the lack of sufficient knowledge, many patients are not diagnosed. Nowadays, the advances in high-throughput sequencing technologies such as whole genome sequencing, single-cell and others, have boosted the understanding of RDs. To extract biological meaning using the data generated by these methods, different analysis techniques have been proposed, including machine learning algorithms. These methods have recently proven to be valuable in the medical field. Among such approaches, unsupervised learning methods via neural networks including autoencoders (AEs) or variational autoencoders (VAEs) have shown promising performances with applications on various type of data and in different contexts, from cancer to healthy patient tissues. In this review, we discuss how AEs and VAEs have been used in biomedical settings. Specifically, we discuss their current applications and the improvements achieved in diagnostic and survival of patients. We focus on the applications in the field of RDs, and we discuss how the employment of AEs and VAEs would enhance RD understanding and diagnosis
Adiponectin downregulates its own production and the expression of its AdipoR2 receptor in transgenic mice.
Adiponectin (ApN) is an adipokine whose expression and plasma levels are inversely related to obesity and insulin-resistant states. The in vivo effects of a chronic expression of exogenous ApN restricted to adipose tissue are unclear. Moreover, the regulatory effects of ApN on its own expression and on that of its receptors are still unknown. In this study, we generated transgenic (Tg) mice with moderate expression of exogenous ApN targeted to adipose tissue (native full-length ApN being placed under control of the adipocyte promoter aP2). After a transient overexpression of ApN in young pups, we intriguingly observed a reduction of ApN mRNA levels and protein content in fat depots, together with a decrease of circulating ApN in adult mice. As a result, the phenotype of these adult mice included glucose intolerance, insulin resistance, and increased adiposity. Reduced expression of ApN in fat tissue was associated with diminished expression of uncoupling protein 2 involved in energy dissipation, and higher expression of fatty acid synthase, a key enzyme of lipogenesis, and of TNFalpha implicated in insulin resistance. Concomitantly, the expression of the ApN receptor AdipoR2 that mediates action of full-length ApN was downregulated, while that of AdipoR1 was unaffected. In agreement with the in vivo studies, recombinant ApN added to the culture medium of 3T3-F442A adipocytes caused a decrease in AdipoR2 and ApN mRNA levels. This treatment did not affect the expression of AdipoR1. Eventually, we demonstrated a contrario that AdipoR2 (but not R1) was specifically upregulated in fat of ApN(-/-) mice. Our in vivo and in vitro data provide evidence for a novel regulatory feedback loop by which ApN downregulates its own production and the expression of its AdipoR2 receptor
Targeted next generation sequencing with an extended gene panel does not impact variant detection in mitochondrial diseases
Abstract Background Since the advent of next generation sequencing (NGS), several studies have tried to evaluate the relevance of targeted gene panel sequencing and whole exome sequencing for molecular diagnosis of mitochondrial diseases. The comparison between these different strategies is extremely difficult. A recent study analysed a cohort of patients affected by a mitochondrial disease using a NGS approach based on a targeted gene panel including 132 genes. This strategy led to identify the causative mutations in 15.2% of cases. The number of novel genes responsible for respiratory chain deficiency increases very rapidly. Methods In order to determine the impact of larger panels used as a first screening strategy on molecular diagnosis success, we analysed a cohort of 80 patients affected by a mitochondrial disease with a first mitochondrial DNA (mtDNA) NGS screening and secondarily a targeted mitochondrial panel of 281 nuclear genes. Results Pathogenic mtDNA abnormalities were identified in 4.1% (1/24) of children and 25% (14/56) of adult patients. The remaining 65 patients were analysed with our targeted mitochondrial panel and this approach enabled us to achieve an identification rate of 21.7% (5/23) in children versus 7.1% (3/42) in adults. Conclusions Our results confirm that larger gene panels do not improve diagnostic yield of mitochondrial diseases due to (i) their very high genetic heterogeneity, (ii) the ongoing discovery of novel genes and (iii) mutations in genes apparently not related to mitochondrial function that lead to secondary respiratory chain deficiency
Coenzyme Q10 defects may be associated with a deficiency of Q10-independent mitochondrial respiratory chain complexes
BACKGROUND: Coenzyme Q10 (CoQ10 or ubiquinone) deficiency can be due either to mutations in genes involved in CoQ10 biosynthesis pathway, or to mutations in genes unrelated to CoQ10 biosynthesis. CoQ10 defect is the only oxidative phosphorylation disorder that can be clinically improved after oral CoQ10 supplementation. Thus, early diagnosis, first evoked by mitochondrial respiratory chain (MRC) spectrophotometric analysis, then confirmed by direct measurement of CoQ10 levels, is of critical importance to prevent irreversible damage in organs such as the kidney and the central nervous system. It is widely reported that CoQ10 deficient patients present decreased quinone-dependent activities (segments I + III or G3P + III and II + III) while MRC activities of complexes I, II, III, IV and V are normal. We previously suggested that CoQ10 defect may be associated with a deficiency of CoQ10-independent MRC complexes. The aim of this study was to verify this hypothesis in order to improve the diagnosis of this disease. RESULTS: To determine whether CoQ10 defect could be associated with MRC deficiency, we quantified CoQ10 by LC-MSMS in a cohort of 18 patients presenting CoQ10-dependent deficiency associated with MRC defect. We found decreased levels of CoQ10 in eight patients out of 18 (45 %), thus confirming CoQ10 disease. CONCLUSIONS: Our study shows that CoQ10 defect can be associated with MRC deficiency. This could be of major importance in clinical practice for the diagnosis of a disease that can be improved by CoQ10 supplementation