431 research outputs found
Body fat percentage is a major determinant of total bilirubin independently of UGT1A1*28 polymorphism in young obese
OBJECTIVES:
Bilirubin has potential antioxidant and anti-inflammatory properties. The UGT1A1*28 polymorphism (TA repeats in the promoter region) is a major determinant of bilirubin levels and recent evidence suggests that raised adiposity may also be a contributing factor. We aimed to study the interaction between UGT1A1 polymorphism, hematological and anthropometric variables with total bilirubin levels in young individuals.
METHODS:
350 obese (mean age of 11.6 years; 52% females) and 79 controls (mean age of 10.5 years; 59% females) were included. Total bilirubin and C-reactive protein (CRP) plasma levels, hemogram, anthropometric data and UGT1A1 polymorphism were determined. In a subgroup of 74 obese and 40 controls body composition was analyzed by dual-energy X-ray absorptiometry.
RESULTS:
The UGT1A1 genotype frequencies were 49.9%, 42.7% and 7.5% for 6/6, 6/7 and 7/7 genotypes, respectively. Patients with 7/7 genotype presented the highest total bilirubin levels, followed by 6/7 and 6/6 genotypes. Compared to controls, obese patients presented higher erythrocyte count, hematocrit, hemoglobin and CRP levels, but no differences in bilirubin or in UGT1A1 genotype distribution. Body fat percentage was inversely correlated with bilirubin in obese patients but not in controls. This inverse association was observed either in 6/7 or 6/6 genotype obese patients. UGT1A1 polymorphism and body fat percentage were the main factors affecting bilirubin levels within obese patients (linear regression analysis).
CONCLUSION:
In obese children and adolescents, body fat composition and UGT1A1 polymorphism are independent determinants of total bilirubin levels. Obese individuals with 6/6 UGT1A1 genotype and higher body fat mass may benefit from a closer clinical follow-up.This work was funded by FEDER funds through the Operational Competitiveness Programme – COMPETE and by National Funds through FCT – Fundação para a Ciência e a Tecnologia under the project FCOMP-01-0124-FEDER-028613 (PTDC/DTP-DES/0393/2012). A PhD grant was attributed to H. Nascimento by FCT (SFRH/BD/48060/2008). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Bilirubin is independently associated with oxidized LDL levels in young obese patients
BACKGROUND:
Bilirubin can prevent lipid oxidation in vitro, but the association in vivo with oxidized low-density lipoprotein (Ox-LDL) levels has been poorly explored. Our aim is to the association of Ox-LDL with total bilirubin (TB) levels and with variables related with metabolic syndrome and inflammation, in young obese individuals.
FINDINGS:
125 obese patients (13.4 years; 53.6% females) were studied. TB, lipid profile including Ox-LDL, markers of glucose metabolism, and levels of C-reactive protein (CRP) and adiponectin were determined. Anthropometric data was also collected. In all patients, Ox-LDL correlated positively with BMI, total cholesterol, LDLc, triglycerides (TG), CRP, glucose, insulin and HOMAIR; while inversely with TB and HDLc/Total cholesterol ratio (P < 0.05 for all). In multiple linear regression analysis, LDLc, TG, HDLc and TB levels were significantly associated with Ox-LDL (standardized Beta: 0.656, 0.293, -0.283, -0.164, respectively; P < 0.01 for all). After removing TG and HDLc from the analysis, HOMAIR was included in the regression model. In this new model, LDLc remained the best predictor of Ox-LDL levels (β = 0.665, P < 0.001), followed by TB (β = -0.202, P = 0.002) and HOMAIR (β = 0.163, P = 0.010).
CONCLUSIONS:
Lower bilirubin levels may contribute to increased LDL oxidation in obese children and adolescents, predisposing to increased cardiovascular risk
Novel peptides derived from dengue virus capsid protein translocate reversibly the blood−brain barrier through a receptor-free mechanism
© 2017 American Chemical SocietyThe delivery of therapeutic molecules to the central nervous system is hampered by poor delivery across the blood-brain barrier (BBB). Several strategies have been proposed to enhance transport into the brain, including invasive techniques and receptor-mediated transport (RMT). Both approaches have several drawbacks, such as BBB disruption, receptor saturation, and off-target effects, raising safety issues. Herein, we show that specific domains of Dengue virus type 2 capsid protein (DEN2C) can be used as trans-BBB peptide vectors. Their mechanism of translocation is receptor-independent and consistent with adsorptive-mediated transport (AMT). One peptide in particular, named PepH3, reaches equilibrium distribution concentrations across the BBB in less than 24 h in a cellular in vitro assay. Importantly, in vivo biodistribution data with radiolabeled peptide derivatives show high brain penetration. In addition, there is fast clearance from the brain and high levels of excretion, showing that PepH3 is a very good candidate to be used as a peptide shuttle taking cargo in and out of the brain.The authors thank the Portuguese Funding Agency, Fundação para a Ciência e a Tecnologia, FCT IP, for financial support (grants SFRH/BPD/94466/2013; SFRH/BPD/109010/2015; IF/01010/2013; PTDC/BBBNAN/1578/2014; HIVERA/ 0002/2013) and Marie Skłodowska-Curie Research and Innovation Staff Exchange (MSCA-RISE), call 20-MSCARISE-2014 (grant agreement H20 644167 − INPACT). M.M., L.G., C.F., and J.D.G.C. gratefully acknowledge FCT support through the UID/Multi/04349/2013 project.info:eu-repo/semantics/publishedVersio
Referência técnica do crescimento inicial de tambaquis (Colossoma macropomum) em tanques-rede em reservatório.
AQUACIÊNCIA 2018
Desenvolvimento radicular da soja em diferentes níveis de compactação e tensões de água em Planossolo.
Made available in DSpace on 2019-09-11T00:43:46Z (GMT). No. of bitstreams: 1
11Timm.pdf: 153102 bytes, checksum: 164a9cfbb43e05ec2137de2319cbe791 (MD5)
Previous issue date: 2019bitstream/item/201780/1/11-Timm.pd
- …