24 research outputs found
NuSTAR J033202-2746.8: Direct Constraints on the Compton Reflection in a Heavily Obscured Quasar at z ≈ 2
We report Nuclear Spectroscopic Telescope Array (NuSTAR) observations of NuSTAR J033202-2746.8, a heavily obscured, radio-loud quasar detected in the Extended Chandra Deep Field-South, the deepest layer of the NuSTAR extragalactic survey (~400 ks, at its deepest). NuSTAR J033202-2746.8 is reliably detected by NuSTAR only at E > 8 keV and has a very flat spectral slope in the NuSTAR energy band (; 3-30 keV). Combining the NuSTAR data with extremely deep observations by Chandra and XMM-Newton (4 Ms and 3 Ms, respectively), we constrain the broad-band X-ray spectrum of NuSTAR J033202-2746.8, indicating that this source is a heavily obscured quasar ( cm–2) with luminosity L 10-40 keV ≈ 6.4 × 1044 erg s–1. Although existing optical and near-infrared (near-IR) data, as well as follow-up spectroscopy with the Keck and VLT telescopes, failed to provide a secure redshift identification for NuSTAR J033202-2746.8, we reliably constrain the redshift z = 2.00 ± 0.04 from the X-ray spectral features (primarily from the iron K edge). The NuSTAR spectrum shows a significant reflection component (), which was not constrained by previous analyses of Chandra and XMM-Newton data alone. The measured reflection fraction is higher than the R ~ 0 typically observed in bright radio-loud quasars such as NuSTAR J033202-2746.8, which has L 1.4 GHz ≈ 1027 W Hz–1. Constraining the spectral shape of active galactic nuclei (AGNs), including bright quasars, is very important for understanding the AGN population, and can have a strong impact on the modeling of the X-ray background. Our results show the importance of NuSTAR in investigating the broad-band spectral properties of quasars out to high redshift
The NuSTAR Serendipitous Survey: Hunting for the Most Extreme Obscured AGN at >10 keV
We identify sources with extremely hard X-ray spectra (i.e., with photon indices of ) in the 13 deg2 NuSTAR serendipitous survey, to search for the most highly obscured active galactic nuclei (AGNs) detected at . Eight extreme NuSTAR sources are identified, and we use the NuSTAR data in combination with lower-energy X-ray observations (from Chandra, Swift XRT, and XMM-Newton) to characterize the broadband (0.5–24 keV) X-ray spectra. We find that all of the extreme sources are highly obscured AGNs, including three robust Compton-thick (CT; cm−2) AGNs at low redshift () and a likely CT AGN at higher redshift (z = 0.16). Most of the extreme sources would not have been identified as highly obscured based on the low-energy ( keV) X-ray coverage alone. The multiwavelength properties (e.g., optical spectra and X-ray–mid-IR luminosity ratios) provide further support for the eight sources being significantly obscured. Correcting for absorption, the intrinsic rest-frame 10–40 keV luminosities of the extreme sources cover a broad range, from to 1045 erg s−1. The estimated number counts of CT AGNs in the NuSTAR serendipitous survey are in broad agreement with model expectations based on previous X-ray surveys, except for the lowest redshifts (), where we measure a high CT fraction of . For the small sample of CT AGNs, we find a high fraction of galaxy major mergers (50% ± 33%) compared to control samples of "normal" AGNs
A remarkably flat relationship between the average star formation rate and AGN luminosity for distant X-ray AGN
In this study, we investigate the relationship between the star formation rate (SFR) and AGN luminosity (LAGNLAGN) for ∼2000 X-ray detected AGN. The AGN span over three orders of magnitude in X-ray luminosity (1042<L2−8keV<1045.5ergs−11042<L2−8keV<1045.5ergs−1) and are in the redshift range z = 0.2–2.5. Using infrared (IR) photometry (8–500 μmμm), including deblended Spitzer and Herschel images and taking into account photometric upper limits, we decompose the IR spectral energy distributions into AGN and star formation components. Using the IR luminosities due to star formation, we investigate the average SFRs as a function of redshift and AGN luminosity. In agreement with previous studies, we find a strong evolution of the average SFR with redshift, tracking the observed evolution of the overall star-forming galaxy population. However, we find that the relationship between the average SFR and AGN luminosity is broadly flat at all redshifts and across all the AGN luminosities investigated; in comparison to previous studies, we find less scatter amongst the average SFRs across the wide range of AGN luminosities investigated. By comparing to empirical models, we argue that the observed flat relationship is due to short time-scale variations in AGN luminosity, driven by changes in the mass accretion rate, which wash out any underlying correlations between SFR and LAGNLAGN. Furthermore, we show that the exact form of the predicted relationship between SFR and AGN luminosity (and its normalization) is highly sensitive to the assumed intrinsic Eddington ratio distribution
The mean star formation rates of unobscured QSOs: searching for evidence of suppressed or enhanced star formation
We investigate the mean star formation rates (SFRs) in the host galaxies of ∼3000 optically selected quasi-stellar objects (QSOs) from the Sloan Digital Sky Survey within the Herschel-ATLAS fields, and a radio-luminous subsample covering the redshift range of z = 0.2–2.5. Using Wide-field Infrared Survey Explorer (WISE) and Herschel photometry (12–500 μm) we construct composite spectral energy distributions (SEDs) in bins of redshift and active galactic nucleus (AGN) luminosity. We perform SED fitting to measure the mean infrared luminosity due to star formation, removing the contamination from AGN emission. We find that the mean SFRs show a weak positive trend with increasing AGN luminosity. However, we demonstrate that the observed trend could be due to an increase in black hole (BH) mass (and a consequent increase of inferred stellar mass) with increasing AGN luminosity. We compare to a sample of X-ray selected AGN and find that the two populations have consistent mean SFRs when matched in AGN luminosity and redshift. On the basis of the available virial BH masses, and the evolving BH mass to stellar mass relationship, we find that the mean SFRs of our QSO sample are consistent with those of main sequence star-forming galaxies. Similarly the radio-luminous QSOs have mean SFRs that are consistent with both the overall QSO sample and with star-forming galaxies on the main sequence. In conclusion, on average QSOs reside on the main sequence of star-forming galaxies, and the observed positive trend between the mean SFRs and AGN luminosity can be attributed to BH mass and redshift dependencies