72 research outputs found
The Value of Autofluorescence Bronchoscopy Combined with White Light Bronchoscopy Compared with White Light Alone in the Diagnosis of Intraepithelial Neoplasia and Invasive Lung Cancer: A Meta-Analysis
ObjectiveTo compare the accuracy of autofluorescence bronchoscopy (AFB) combined with white light bronchoscopy (WLB) versus WLB alone in the diagnosis of lung cancer.MethodsThe Ovid, PubMed, and Google Scholar databases from January 1990 to October 2010 were searched. Two reviewers independently assessed the quality of the trials and extracted data. The relative risk for sensitivity and specificity on a per-lesion basis of AFB + WLB versus WLB alone to detect intraepithelial neoplasia and invasive cancer were pooled by Review Manager.ResultsTwenty-one studies involving 3266 patients were ultimately analyzed. The pool relative sensitivity on a per-lesion basis of AFB + WLB versus WLB alone to detect intraepithelial neoplasia and invasive cancer was 2.04 (95% confidence interval [CI] 1.72–2.42) and 1.15 (95% CI 1.05–1.26), respectively. The pool relative specificity on a per-lesion basis of AFB + WLB versus WLB alone was 0.65 (95% CI 0.59–0.73).ConclusionsAlthough the specificity of AFB + WLB is lower than WLB alone, AFB + WLB seems to significantly improve the sensitivity to detect intraepithelial neoplasia. However, this advantage over WLB alone seems much less in detecting invasive lung cancer
Influence of Mo on the Fe:Mo:C nano-catalyst thermodynamics for single-walled carbon nanotube growth
We explore the role of Mo in Fe:Mo nanocatalyst thermodynamics for
low-temperature chemical vapor deposition growth of single walled carbon
nanotubes (SWCNTs). By using the size-pressure approximation and ab initio
modeling, we prove that for both Fe-rich (~80% Fe or more) and Mo-rich (~50% Mo
or more) Fe:Mo clusters, the presence of carbon in the cluster causes
nucleation of Mo2C. This enhances the activity of the particle since it
releases Fe, which is initially bound in a stable Fe:Mo phase, so that it can
catalyze SWCNT growth. Furthermore, the presence of small concentrations of Mo
reduce the lower size limit of low-temperature steady-state growth from ~0.58nm
for pure Fe particles to ~0.52nm. Our ab initio-thermodynamic modeling explains
experimental results and establishes a new direction to search for better
catalysts.Comment: 7 pages, 3 figures. submitte
Theoretical study of the thermal behavior of free and alumina-supported Fe-C nanoparticles
The thermal behavior of free and alumina-supported iron-carbon nanoparticles
is investigated via molecular dynamics simulations, in which the effect of the
substrate is treated with a simple Morse potential fitted to ab initio data. We
observe that the presence of the substrate raises the melting temperature of
medium and large nanoparticles ( = 0-0.16, = 80-1000, non-
magic numbers) by 40-60 K; it also plays an important role in defining the
ground state of smaller Fe nanoparticles ( = 50-80). The main focus of our
study is the investigation of Fe-C phase diagrams as a function of the
nanoparticle size. We find that as the cluster size decreases in the
1.1-1.6-nm-diameter range the eutectic point shifts significantly not only
toward lower temperatures, as expected from the Gibbs-Thomson law, but also
toward lower concentrations of C. The strong dependence of the maximum C
solubility on the Fe-C cluster size may have important implications for the
catalytic growth of carbon nanotubes by chemical vapor deposition.Comment: 13 pages, 11 figures, higher quality figures can be seen in article 9
at http://alpha.mems.duke.edu/wahyu
- …