259 research outputs found

    Thinning and drilling laser-assisted hatching in thawed embryo transfer : A randomized controlled trial

    Get PDF
    Objective: In frozen and thawed embryos, the zona pellucida (ZP) can be damaged due to hardening. Laser-assisted hatching (LAH) of embryos can increase the pregnancy rate. This study compared thinning and drilling of the ZP before frozen embryo transfer (FET). Methods: Patients were randomly allocated into two groups for LAH using thinning or drilling on day 2 after thawing. Twenty-five percent of the ZP circumference and 50% of the ZP thickness was removed in the thinning group, and a hole 40 μm in diameter was made in the drilling group. Results: A total of 171 in vitro fertilization/intracytoplasmic sperm injection FET cycles, including 85 cycles with drilling LAH and 86 cycles with thinning LAH, were carried out. The thinning group had a similar β-human chorionic gonadotropin-positive rate (38.4% vs. 29.4%), implantation rate (16.5% vs. 14.4%), clinical pregnancy rate (36.0% vs. 25.9%), miscarriage rate (5.8% vs. 2.4%), ongoing pregnancy rate (30.2% vs. 23.5%), and multiple pregnancy rate (7.0% vs. 10.6%) to the drilling LAH group. There were no significant differences in pregnancy outcomes between subgroups defined based on age (older or younger than 35 years) or ZP thickness (greater or less than 17 μm) according to the LAH method. Conclusion: The present study demonstrated that partial ZP thinning or drilling resulted in similar outcomes in implantation and pregnancy rates using thawed embryos, irrespective of women's age or ZP thickness. © 2018. The Korean Society for Reproductive Medicine.Peer reviewe

    ОПТИМИЗАЦИЯ РАЗМЕЩЕНИЯ ОБЪЕКТОВ С УЧЕТОМ ИХ РЕПЛИКАЦИЙ НА УЗЛАХ РАСПРЕДЕЛЕННОЙ ИНФОРМАЦИОННО-ВЫЧИСЛИТЕЛЬНОЙ СИСТЕМЫ

    Get PDF
    Предлагается модель размещения объектов на узлах распределенной системы, учитывающаявведение репликаций, параметры объектов и потоков запросов к объектам, характеристики каналов передачи данных и узлов обработки запросов. Формулируется оптимизационная задача распределения объектов на узлах, предлагается алгоритм наискорейшего спуска решения задачи. Проводятся эксперименты, выявляющие закономерности и тренды в изменении параметров функционирования оптимизированной системы

    Plasma–wall interaction studies within the EUROfusion consortium : progress on plasma-facing components development and qualification

    Get PDF
    The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful o peration of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading f acilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualificat ion and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma–material interaction as well as the study of fundamental processes. WP PFC addresses these c ritical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle lo ads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alter native scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and m icrostructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.Peer reviewe

    Plasma-wall interaction studies within the EUROfusion consortium: Progress on plasma-facing components development and qualification

    Get PDF
    This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.European Commission; Consortium for Ocean Leadership 633053; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Overview of the JET ITER-like wall divertor

    Get PDF

    Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET

    Get PDF

    ELM divertor peak energy fluence scaling to ITER with data from JET, MAST and ASDEX upgrade

    Get PDF

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas

    Get PDF

    Assessment of erosion, deposition and fuel retention in the JET-ILW divertor from ion beam analysis data

    Get PDF
    corecore