1 research outputs found

    Temperature evolution of domains and intradomain chirality in 1T- TaS2

    Get PDF
    We use scanning tunneling microscopy to study the temperature evolution of the atomic-scale properties of the nearly commensurate charge density wave (NC-CDW) state of the low-dimensional material 1T-TaS2. Our measurements at 203, 300, and 354 K, roughly spanning the temperature range of the NC-CDW state, show that while the average CDW periodicity is temperature independent, domaining and the local evolution of the CDW lattice within a domain are temperature dependent. Further, we characterize the temperature evolution of the displacement field associated with the recently discovered intradomain chirality of the NC-CDW state by calculating the local rotation vector. Intradomain chirality throughout the NC-CDW phase is likely driven by a strong coupling of the CDW lattice to the atomic lattice. © 2023 American Physical Society
    corecore