21 research outputs found
A simple method that enhances minority species detection in the microbiota: 16S metagenome-DRIP (Deeper Resolution using an Inhibitory Primer)
Aim: 16S rRNA gene-based microbiota analyses (16S metagenomes) using next-generation sequencing (NGS) technologies are widely used to examine the microbial community composition in environmental samples. However, the sequencing capacity of NGS is sometimes insufficient to cover the whole microbial community, especially when analyzing soil and fecal microbiotas. This limitation may have hampered the detection of minority species that potentially affect microbiota formation and structure. Methods: We developed a simple method, termed 16S metagenome-DRIP (Deeper Resolution using an Inhibitory Primer), that not only enhances minority species detection but also increases the accuracy of their abundance estimation. The method relies on the inhibition of normal amplicon formation of the 16S rRNA gene of a target major (abundant) species during the first PCR step. The addition of a biotinylated primer that is complementary to the variable sequence of the V3-V4 region of the target species inhibits a normal amplification process to form an aberrant short amplicon. The fragment is then captured by streptavidin beads for removal from the reaction mixture, and the resulting mixture is utilized for the second PCR with barcode-tag primers. Thus, this method only requires two additional experimental procedures to the conventional 16S metagenome analysis. A proof-of-concept experiment was first conducted using a mock sample consisting of the genomes of 14 bacterial species. Then, the method was applied to infant fecal samples using a Bifidobacterium-specific inhibitory primer (n = 11). Results: As a result, the reads assigned to the family Bifidobacteriaceae decreased on average from 16, 657 to 1718 per sample without affecting the total read counts (36, 073 and 34, 778 per sample for the conventional and DRIP methods, respectively). Furthermore, the minority species detection rate increased with neither affecting Bray-Curtis dissimilarity calculated by omitting the target Bifidobacterium species (median: 0.049) nor changing the relative abundances of the non-target species. While 115 amplicon sequence variants (ASVs) were unique to the conventional method, 208 ASVs were uniquely detected for the DRIP method. Moreover, the abundance estimation for minority species became more accurate, as revealed thorough comparison with the results of quantitative PCR analysis. Conclusion: The 16S metagenome-DRIP method serves as a useful technique to grasp a deeper and more accurate microbiota composition when combined with conventional 16S metagenome analysis methods
Identification of key yeast species and microbe–microbe interactions impacting larval growth of Drosophila in the wild
自然界で動物の成長を支える共生微生物叢 --中心的な役割を担う共生酵母・細菌の同定--. 京都大学プレスリリース. 2023-12-28.Microbiota consisting of various fungi and bacteria have a significant impact on the physiological functions of the host. However, it is unclear which species are essential to this impact and how they affect the host. This study analyzed and isolated microbes from natural food sources of Drosophila larvae, and investigated their functions. Hanseniaspora uvarum is the predominant yeast responsible for larval growth in the earlier stage of fermentation. As fermentation progresses, Acetobacter orientalis emerges as the key bacterium responsible for larval growth, although yeasts and lactic acid bacteria must coexist along with the bacterium to stabilize this host–bacterial association. By providing nutrients to the larvae in an accessible form, the microbiota contributes to the upregulation of various genes that function in larval cell growth and metabolism. Thus, this study elucidates the key microbial species that support animal growth under microbial transition
Effect of kaempferol ingestion on physical activity and sleep quality: a double-blind, placebo-controlled, randomized, crossover trial
BackgroundKaempferol (KMP), a flavonoid in edible plants, exhibits diverse pharmacological effects. Growing body of evidence associates extended lifespan with physical activity (PA) and sleep, but KMP’s impact on these behaviors is unclear. This double-blind, placebo-controlled, crossover trial assessed KMP’s effects on PA and sleep.MethodsA total of 33 city workers (17 males and 16 females) participated in this study. They were randomly assigned to take either 10 mg of KMP or placebo for 2 weeks in the order allocated, with a 7-day washout period in between. All participants wore an accelerometer-based wearable device (Fitbit Charge 4), which monitored daily PA, heart rate (HR), and HR variability during sleep.ResultsThe duration of wearing the device was 23.73 ± 0.04 h/day. HR decreased in each PA level, and the mean daily step count and distance covered increased significantly during KMP intake compared to placebo. The outing rate, number of trips, number of recreational activities, and time spent in recreation on weekends increased. Sleep quality improved following KMP intake. The decrease in HR and increase in RMSSD may be important in mediating the effects of these KMPs.ConclusionKMP leads to behavioral changes that subsequently improve sleep quality and potentially improve long-term quality of life.Clinical Trial Registrationhttps://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000048447, UMIN000042438
Comprehensive analysis of metabolites produced by co-cultivation of Bifidobacterium breve MCC1274 with human iPS-derived intestinal epithelial cells
Examining how host cells affect metabolic behaviors of probiotics is pivotal to better understand the mechanisms underlying the probiotic efficacy in vivo. However, studies to elucidate the interaction between probiotics and host cells, such as intestinal epithelial cells, remain limited. Therefore, in this study, we performed a comprehensive metabolome analysis of a co-culture containing Bifidobacterium breve MCC1274 and induced pluripotent stem cells (iPS)-derived small intestinal-like cells. In the co-culture, we observed a significant increase in several amino acid metabolites, including indole-3-lactic acid (ILA) and phenyllactic acid (PLA). In accordance with the metabolic shift, the expression of genes involved in ILA synthesis, such as transaminase and tryptophan synthesis-related genes, was also elevated in B. breve MCC1274 cells. ILA production was enhanced in the presence of purines, which were possibly produced by intestinal epithelial cells (IECs). These findings suggest a synergistic action of probiotics and IECs, which may represent a molecular basis of host-probiotic interaction in vivo
Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides
母乳栄養児の腸内におけるビフィズス菌コミュニティー形成には先住効果が大きな影響を及ぼす --ヒトミルクオリゴ糖利用能力の低いビフィズス菌B. breveが優勢となる仕組み--. 京都大学プレスリリース. 2022-07-27.Bifidobacteria are among the first colonizers of the infant gut, and human milk oligosaccharides (HMOs) in breastmilk are instrumental for the formation of a bifidobacteria-rich microbiota. However, little is known about the assembly of bifidobacterial communities. Here, by applying assembly theory to a community of four representative infant-gut associated Bifidobacterium species that employ varied strategies for HMO consumption, we show that arrival order and sugar consumption phenotypes significantly affected community formation. Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis, two avid HMO consumers, dominate through inhibitory priority effects. On the other hand, Bifidobacterium breve, a species with limited HMO-utilization ability, can benefit from facilitative priority effects and dominates by utilizing fucose, an HMO degradant not utilized by the other bifidobacterial species. Analysis of publicly available breastfed infant faecal metagenome data showed that the observed trends for B. breve were consistent with our in vitro data, suggesting that priority effects may have contributed to its dominance. Our study highlights the importance and history dependency of initial community assembly and its implications for the maturation trajectory of the infant gut microbiota
A simple method that enhances minority species detection in the microbiota: 16S metagenome-DRIP (Deeper Resolution using an Inhibitory Primer)
Aim: 16S rRNA gene-based microbiota analyses (16S metagenomes) using next-generation sequencing (NGS) technologies are widely used to examine the microbial community composition in environmental samples. However, the sequencing capacity of NGS is sometimes insufficient to cover the whole microbial community, especially when analyzing soil and fecal microbiotas. This limitation may have hampered the detection of minority species that potentially affect microbiota formation and structure.Methods: We developed a simple method, termed 16S metagenome-DRIP (Deeper Resolution using an Inhibitory Primer), that not only enhances minority species detection but also increases the accuracy of their abundance estimation. The method relies on the inhibition of normal amplicon formation of the 16S rRNA gene of a target major (abundant) species during the first PCR step. The addition of a biotinylated primer that is complementary to the variable sequence of the V3-V4 region of the target species inhibits a normal amplification process to form an aberrant short amplicon. The fragment is then captured by streptavidin beads for removal from the reaction mixture, and the resulting mixture is utilized for the second PCR with barcode-tag primers. Thus, this method only requires two additional experimental procedures to the conventional 16S metagenome analysis. A proof-of-concept experiment was first conducted using a mock sample consisting of the genomes of 14 bacterial species. Then, the method was applied to infant fecal samples using a Bifidobacterium-specific inhibitory primer (n = 11).Results: As a result, the reads assigned to the family Bifidobacteriaceae decreased on average from 16,657 to 1718 per sample without affecting the total read counts (36,073 and 34,778 per sample for the conventional and DRIP methods, respectively). Furthermore, the minority species detection rate increased with neither affecting Bray-Curtis dissimilarity calculated by omitting the target Bifidobacterium species (median: 0.049) nor changing the relative abundances of the non-target species. While 115 amplicon sequence variants (ASVs) were unique to the conventional method, 208 ASVs were uniquely detected for the DRIP method. Moreover, the abundance estimation for minority species became more accurate, as revealed thorough comparison with the results of quantitative PCR analysis.Conclusion: The 16S metagenome-DRIP method serves as a useful technique to grasp a deeper and more accurate microbiota composition when combined with conventional 16S metagenome analysis methods
Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis
ビフィズス菌におけるヒトへの適応進化を発見 --母乳オリゴ糖トランスポーターの獲得形質がビフィズスフローラ形成を促す--. 京都大学プレスリリース. 2019-09-05.The human gut microbiota established during infancy has persistent effects on health. In vitro studies have suggested that human milk oligosaccharides (HMOs) in breast milk promote the formation of a bifidobacteria-rich microbiota in infant guts; however, the underlying molecular mechanism remains elusive. Here, we characterized two functionally distinct but overlapping fucosyllactose transporters (FL transporter-1 and -2) from Bifidobacterium longum subspecies infantis. Fecal DNA and HMO consumption analyses, combined with deposited metagenome data mining, revealed that FL transporter-2 is primarily associated with the bifidobacteria-rich microbiota formation in breast-fed infant guts. Structural analyses of the solute-binding protein (SBP) of FL transporter-2 complexed with 2′-fucosyllactose and 3-fucosyllactose, together with phylogenetic analysis of SBP homologs of both FL transporters, highlight a unique adaptation strategy of Bifidobacterium to HMOs, in which the gain-of-function mutations enable FL transporter-2 to efficiently capture major fucosylated HMOs. Our results provide a molecular insight into HMO-mediated symbiosis and coevolution between bifidobacteria and humans