212 research outputs found
Enhancing SAEAs with Unevaluated Solutions: A Case Study of Relation Model for Expensive Optimization
Surrogate-assisted evolutionary algorithms (SAEAs) hold significant
importance in resolving expensive optimization problems~(EOPs). Extensive
efforts have been devoted to improving the efficacy of SAEAs through the
development of proficient model-assisted selection methods. However, generating
high-quality solutions is a prerequisite for selection. The fundamental
paradigm of evaluating a limited number of solutions in each generation within
SAEAs reduces the variance of adjacent populations, thus impacting the quality
of offspring solutions. This is a frequently encountered issue, yet it has not
gained widespread attention. This paper presents a framework using unevaluated
solutions to enhance the efficiency of SAEAs. The surrogate model is employed
to identify high-quality solutions for direct generation of new solutions
without evaluation. To ensure dependable selection, we have introduced two
tailored relation models for the selection of the optimal solution and the
unevaluated population. A comprehensive experimental analysis is performed on
two test suites, which showcases the superiority of the relation model over
regression and classification models in the selection phase. Furthermore, the
surrogate-selected unevaluated solutions with high potential have been shown to
significantly enhance the efficiency of the algorithm.Comment: 18 pages, 9 figure
Effects of Online Learning on Student Moral Development: A Meta-analysis Based on 42 Experimental and Quasi-experimental Studies
The widespread practices of online learning have sparked increasing interest in its educational efficacy. The effects of online learning on learners’ moral development remain contentious in existing research. The purpose of this meta-analysis was to ascertain how online leaning impact students’ moral development. It included 42 experimental and quasi-experimental studies with an aggregate sample of 5303 learners after the processes of literature screening, data extraction, and risk of bias assessment. Analytical results revealed that online learning had positive effects on student moral understanding and reasoning, but no significant impact on student moral emotions and behavior. Subgroup analyses by student type, course type, online learning pattern, and involvement of interactive activity showed that there were disparities in the effect size between all subgroups and that only the moderating effect of student type on student moral reasoning was statistically significant
Augmented reality-based visual-haptic modeling for thoracoscopic surgery training systems
Background: Compared with traditional thoracotomy, video-assisted thoracoscopic surgery (VATS) has less minor trauma, faster recovery, higher patient compliance, but higher requirements for surgeons. Virtual surgery training simulation systems are important and have been widely used in Europe and America. Augmented reality (AR) in surgical training simulation systems significantly improve the training effect of virtual surgical training, although AR technology is still in its initial stage. Mixed reality has gained increased attention in technology-driven modern medicine but has yet to be used in everyday practice. Methods: This study proposed an immersive AR lobectomy within a thoracoscope surgery training system, using visual and haptic modeling to study the potential benefits of this critical technology. The content included immersive AR visual rendering, based on the cluster-based extended position-based dynamics algorithm of soft tissue physical modeling. Furthermore, we designed an AR haptic rendering systems, whose model architecture consisted of multi-touch interaction points, including kinesthetic and pressure-sensitive points. Finally, based on the above theoretical research, we developed an AR interactive VATS surgical training platform. Results: Twenty-four volunteers were recruited from the First People's Hospital of Yunnan Province to evaluate the VATS training system. Face, content, and construct validation methods were used to assess the tactile sense, visual sense, scene authenticity, and simulator performance. Conclusions: The results of our construction validation demonstrate that the simulator is useful in improving novice and surgical skills that can be retained after a certain period of time. The video-assisted thoracoscopic system based on AR developed in this study is effective and can be used as a training device to assist in the development of thoracoscopic skills for novices
WinDB: HMD-free and Distortion-free Panoptic Video Fixation Learning
To date, the widely-adopted way to perform fixation collection in panoptic
video is based on a head-mounted display (HMD), where participants' fixations
are collected while wearing an HMD to explore the given panoptic scene freely.
However, this widely-used data collection method is insufficient for training
deep models to accurately predict which regions in a given panoptic are most
important when it contains intermittent salient events. The main reason is that
there always exist "blind zooms" when using HMD to collect fixations since the
participants cannot keep spinning their heads to explore the entire panoptic
scene all the time. Consequently, the collected fixations tend to be trapped in
some local views, leaving the remaining areas to be the "blind zooms".
Therefore, fixation data collected using HMD-based methods that accumulate
local views cannot accurately represent the overall global importance of
complex panoramic scenes. This paper introduces the auxiliary Window with a
Dynamic Blurring (WinDB) fixation collection approach for panoptic video, which
doesn't need HMD and is blind-zoom-free. Thus, the collected fixations can well
reflect the regional-wise importance degree. Using our WinDB approach, we have
released a new PanopticVideo-300 dataset, containing 300 panoptic clips
covering over 225 categories. Besides, we have presented a simple baseline
design to take full advantage of PanopticVideo-300 to handle the
blind-zoom-free attribute-induced fixation shifting problem
- …