6 research outputs found

    Effect of Isothermal Annealing on Sn Whisker Growth Behavior of Sn0.7Cu0.05Ni Solder Joint

    Full text link
    This paper presents an assessment of the effect of isothermal annealing of Sn whisker growth behavior on the surface of Sn0.7Cu0.05Ni solder joints using the hot-dip soldering technique. Sn0.7Cu and Sn0.7Cu0.05Ni solder joints with a similar solder coating thickness was aged up to 600 h in room temperature and annealed under 50 °C and 105 °C conditions. Through the observations, the significant outcome was the suppressing effect of Sn0.7Cu0.05Ni on Sn whisker growth in terms of density and length reduction. The fast atomic diffusion of isothermal annealing consequently reduced the stress gradient of Sn whisker growth on the Sn0.7Cu0.05Ni solder joint. It was also established that the smaller (Cu,Ni)6Sn5 grain size and stability characteristic of hexagonal η-Cu6Sn5 considerably contribute to the residual stress diminished in the (Cu,Ni)6Sn5 IMC interfacial layer and are able to suppress the growth of Sn whiskers on the Sn0.7Cu0.05Ni solder joint. The findings of this study provide environmental acceptance with the aim of suppressing Sn whisker growth and upsurging the reliability of the Sn0.7Cu0.05Ni solder joint at the electronic-device-operation temperature

    Effect of Ni on the Suppression of Sn Whisker Formation in Sn-0.7Cu Solder Joint

    Full text link
    The evolution of internal compressive stress from the intermetallic compound (IMC) Cu6Sn5 growth is commonly acknowledged as the key inducement initiating the nucleation and growth of tin (Sn) whisker. This study investigates the effect of Sn-0.7Cu-0.05Ni on the nucleation and growth of Sn whisker under continuous mechanical stress induced. The Sn-0.7Cu-0.05Ni solder joint has a noticeable effect of suppression by diminishing the susceptibility of nucleation and growth of Sn whisker. By using a synchrotron micro X-ray fluorescence (µ-XRF) spectroscopy, it was found that a small amount of Ni alters the microstructure of Cu6Sn5 to form a (Cu,Ni)6Sn5 intermetallic layer. The morphology structure of the (Cu,Ni)6Sn5 interfacial intermetallic layer and Sn whisker growth were investigated by scanning electron microscope (SEM) in secondary and backscattered electron imaging mode, which showed that there is a strong correlation between the formation of Sn whisker and the composition of solder alloy. The thickness of the (Cu,Ni)6Sn5 IMC interfacial layer was relatively thinner and more refined, with a continuous fine scallop-shaped IMC interfacial layer, and consequently enhanced a greater incubation period for the nucleation and growth of the Sn whisker. These verification outcomes proposes a scientifically foundation to mitigate Sn whisker growth in lead-free solder joint

    Effect of Ni on the Suppression of Sn Whisker Formation in Sn-0.7Cu Solder Joint

    Full text link
    The evolution of internal compressive stress from the intermetallic compound (IMC) Cu6Sn5 growth is commonly acknowledged as the key inducement initiating the nucleation and growth of tin (Sn) whisker. This study investigates the effect of Sn-0.7Cu-0.05Ni on the nucleation and growth of Sn whisker under continuous mechanical stress induced. The Sn-0.7Cu-0.05Ni solder joint has a noticeable effect of suppression by diminishing the susceptibility of nucleation and growth of Sn whisker. By using a synchrotron micro X-ray fluorescence (µ-XRF) spectroscopy, it was found that a small amount of Ni alters the microstructure of Cu6Sn5 to form a (Cu,Ni)6Sn5 intermetallic layer. The morphology structure of the (Cu,Ni)6Sn5 interfacial intermetallic layer and Sn whisker growth were investigated by scanning electron microscope (SEM) in secondary and backscattered electron imaging mode, which showed that there is a strong correlation between the formation of Sn whisker and the composition of solder alloy. The thickness of the (Cu,Ni)6Sn5 IMC interfacial layer was relatively thinner and more refined, with a continuous fine scallop-shaped IMC interfacial layer, and consequently enhanced a greater incubation period for the nucleation and growth of the Sn whisker. These verification outcomes proposes a scientifically foundation to mitigate Sn whisker growth in lead-free solder joint
    corecore