5 research outputs found

    Muon reconstruction performance and detector-design considerations for a Muon Collider

    No full text
    A muon collider has a great potential for particle physics giving the possibility to reach the high center-of-mass energy and luminosity of hadron colliders, with a greatly reduced pile up effect. However, a series of challenges arise mainly from the short muon lifetime and the Beam-induced Background. A complete simulation, based on CLIC’s ILCSoft software, is ongoing to understand the performance of the full detector. Concerning the muon system, the iron yoke plates are meant to be instrumented with layers of track sensitive chamber to enhance the muon identification. At the moment, according to CLIC geometry, glass Resistive Plate Chambers with readout cells of 30x30 mm2^{2} have been adopted both for the barrel and the endcap region. Other possible solutions, based on MicroPattern Gaseous Detectors, will be discussed considering their characteristics and performance. The results of a preliminary study investigating the muon reconstruction efficiency, Beam-induced Background sensitivity and background mitigation are presented for muon beams collisions at a center-of-mass energy of 1.5 TeV

    {Search for direct production of GeV-scale resonances decaying to a pair of muons in proton-proton collisions at s \sqrt{s} = 13 TeV}

    No full text
    A search for direct production of low-mass dimuon resonances is performed using = 13 TeV proton-proton collision data collected by the CMS experiment during the 2017–2018 operation of the CERN LHC with an integrated luminosity of 96.6 fb−1. The search exploits a dedicated high-rate trigger stream that records events with two muons with transverse momenta as low as 3 GeV but does not include the full event information. The search is performed by looking for narrow peaks in the dimuon mass spectrum in the ranges of 1.1–2.6 GeV and 4.2–7.9 GeV. No significant excess of events above the expectation from the standard model background is observed. Model-independent limits on production rates of dimuon resonances within the experimental fiducial acceptance are set. Competitive or world’s best limits are set at 90% confidence level for a minimal dark photon model and for a scenario with two Higgs doublets and an extra complex scalar singlet (2HDM+S). Values of the squared kinetic mixing coefficient ε2 in the dark photon model above 10−6 are excluded over most of the mass range of the search. In the 2HDM+S, values of the mixing angle sin(θH) above 0.08 are excluded over most of the mass range of the search with a fixed ratio of the Higgs doublets vacuum expectation tan β = 0.5
    corecore