10 research outputs found

    PREVALENCE AND ANTIBIOTIC RESISTANCE AMONG HELICOBACTER PYLORI CLINICAL ISOLATES FROM MAIN HOSPITALS IN THE WESTERN REGION OF SAUDI ARABIA

    No full text
    ABSTRACT Objective: The aim of this study was to evaluate the antimicrobial susceptibility patterns amongst H. pylori clinical strains isolated from the main hospitals in the western region of Saudi Arabia. Methodology: Antimicrobial susceptibility testing was performed for 137 clinical isolates of H. pylori recovered from 368 Saudi patients undergoing endoscopic examination. The antibiotics used were amoxicillin, tetracycline, clarithromycin and metronidazole. Results: A high percentage of resistance were observed against metronidazole (48.2%) followed by clarithromycin (27.7%), amoxicillin (14.6%) and tetracycline (9.5%). A total of 12 (8.8%) multidrug-resistant H. pylori isolates were observed in this study. Moreover, a warning sign of emerging resistance to amoxicillin, tetracycline and clarithromycin were noted. Conclusion: The clinician need to be aware about resistance pattern in their region when they select empiric antibiotics regimen for H. pylori

    Process optimization, antioxidant, antibacterial, and drug adjuvant properties of bioactive keratin microparticles derived from porcupine (Hystrix indica) quills

    No full text
    A structural protein called keratin is often employed in the medical industry to create medication carriers. Process improvement, antioxidant, antibacterial, and adjuvant drug studies of synthetic bioactive keratin microparticles made from lipids and keratin derived from porcupine (Hystrix indica) quills are the main objectives of this study. After coating the keratin microparticles with lipids which were obtained from the same porcupine quills, the bioactive keratin microparticles were produced. The response surface technique was applied to optimize the conditions for extraction of the keratin protein and sizing of the keratin microparticles. An infrared spectroscopy was used to analyze the chemical shifts in compositions of keratin microparticles while the optical microscopy was used to measure the size of the keratin microparticles. The results of this work revealed that a yield 27.36 to 42.25% of the keratin protein could be obtained from porcupine quills. The keratin microparticles were sized between 60.65 and 118.87 µm. Through response surface optimization, mercaptoethanol and urea were shown to be the main variables which positively affected the yield and the size of the keratin protein. The lipid stacking on the keratin microparticles’ surface was confirmed by infrared spectroscopy. The 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonate) assay confirmed the keratin microparticle’s antioxidant activity of 29.83%. Compared to lipid alone, the antibacterial properties of the keratin microparticles against Escherichia coli—a gram-negative—and Staphylococcus aureus—a gram-positive—bacteria enhanced by up to 55% following the coating of the microparticles with the lipids. The pharmacological action against these bacterial species was further improved by the lipid-loaded erythromycin that was carried on the surface of keratin microparticles. This work has demonstrated the design and uses of the keratin microparticles obtained from porcupine quills for clinical applications

    Prevalence and Antibiogram Pattern of <i>Klebsiella pneumoniae</i> in a Tertiary Care Hospital in Makkah, Saudi Arabia: An 11-Year Experience

    No full text
    Infectious disease is one of the greatest causes of morbidity and mortality worldwide, and with the emergence of antimicrobial resistance, the situation is worsening. In order to prevent this crisis, antimicrobial resistance needs to be monitored carefully to control the spread of multidrug-resistant bacteria. Therefore, in this study, we aimed to determine the prevalence of infection caused by Klebsiella pneumoniae and investigate the antimicrobial profile pattern of K. pneumoniae in the last eleven years. This retrospective study was conducted in a tertiary hospital in Makkah, Saudi Arabia. Data were collected from January 2011 to December 2021. From 2011 to 2021, a total of 61,027 bacterial isolates were collected from clinical samples, among which 14.7% (n = 9014) were K. pneumoniae. The antibiotic susceptibility pattern of K. pneumoniae revealed a significant increase in the resistance rate in most tested antibiotics during the study period. A marked jump in the resistance rate was seen in amoxicillin/clavulanate and piperacillin/tazobactam, from 33.6% and 13.6% in 2011 to 71.4% and 84.9% in 2021, respectively. Ceftazidime, cefotaxime, and cefepime resistance rates increased from 29.9%, 26.2%, and 53.9%, respectively, in 2011 to become 84.9%, 85.1%, and 85.8% in 2021. Moreover, a significant increase in the resistance rate was seen in both imipenem and amikacin, with an average resistance rate rise from 6.6% for imipenem and 11.9% for amikacin in 2011 to 59.9% and 62.2% in 2021, respectively. The present study showed that the prevalence and drug resistance of K. pneumoniae increased over the study period. Thus, preventing hospital-acquired infection and the reasonable use of antibiotics must be implemented to control and reduce antimicrobial resistance

    Isolation and detection of drug-resistant bacterial pathogens in postoperative wound infections at a tertiary care hospital in Saudi Arabia

    No full text
    Background: Surgical site infections (SSIs), especially when caused by multidrug-resistant (MDR) bacteria, are a major healthcare concern worldwide. For optimal treatment and prevention of antimicrobial resistance, it is important for clinicians to be aware of local drug-resistant bacterial pathogens that cause SSIs. Objective: To determine the frequency patterns of drug-resistant bacterial strains causing SSIs at a tertiary care hospital in Saudi Arabia. Methods: This retrospective study was conducted at the Microbiology laboratory of Al-Noor Specialist Hospital, Makkah, Saudi Arabia, and included wound swab samples from all cases of SSI between January 01, 2017, and December 31, 2021. The swabs were processed for the identification of bacterial strains and their resistance pattern to antibiotics according to the Clinical and Laboratory Standards Institute. Results: A total of 5409 wound swabs were analyzed, of which 3604 samples (66.6%) were from male. Most samples were from the Department of Surgery (43.3%). A total of 14 bacterial strains were isolated, of which 9 were Gram-negative bacteria. The most common isolates were Klebsiella pneumoniae, followed by Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and vancomycin-resistant S. aureus (VRSA). In terms of MDR in 2021, the highest rate of carbapenem-resistance was in A. baumannii (97%). MDR was as follows: A. baumannii, 97%; K. pneumoniae, 81%; E. coli, 71%; MRSA, 60%; P. aeruginosa, 33%; VRE, 22%; and VRSA, 2%. Conclusion: This study showed that in the city of Makkah, Saudi Arabia, the rates of MDR bacteria are high, with the majority being Gram-negative

    Bacillus subtilis: As an Efficient Bacterial Strain for the Reclamation of Water Loaded with Textile Azo Dye, Orange II

    No full text
    The azo dye orange II is used extensively in the textile sector for coloring fabrics. High concentrations of it are released into aqueous environments through textile effluents. Therefore, its removal from textile wastewater and effluents is necessary. Herein, initially, we tested 11 bacterial strains for their capabilities in the degradation of orange II dye. It was revealed in the preliminary data that B. subtilis can more potently degrade the selected dye, which was thus used in the subsequent experiments. To achieve maximum decolorization, the experimental conditions were optimized whereby maximum degradation was achieved at: a 25 ppm dye concentration, pH 7, a temperature of 35 &deg;C, a 1000 mg/L concentration of glucose, a 1000 mg/L urea concentration, a 666.66 mg/L NaCl concentration, an incubation period of 3 days, and with hydroquinone as a redox mediator at a concentration of 66.66 mg/L. The effects of the interaction of the operational factors were further confirmed using response surface methodology, which revealed that at optimum conditions of pH 6.45, a dye concentration of 17.07 mg/L, and an incubation time of 9.96 h at 45.38 &deg;C, the maximum degradation of orange II can be obtained at a desirability coefficient of 1, estimated using the central composite design (CCD). To understand the underlying principles of degradation of the metabolites in the aliquot mixture at the optimized condition, the study steps were extracted and analyzed using GC-MS(Gas Chromatography Mass Spectrometry), FTIR(Fourier Transform Infrared Spectroscopy), 1H and carbon 13 NMR(Nuclear Magnetic Resonance Spectroscopy). The GC-MS pattern revealed that the original dye was degraded into o-xylene and naphthalene. Naphthalene was even obtained in a pure state through silica gel column isolation and confirmed using 1H and 13C NMR spectroscopic analysis. Phytotoxicity tests on Vigna radiata were also conducted and the results confirmed that the dye metabolites were less toxic than the parent dye. These results emphasize that B. subtilis should be used as a potential strain for the bioremediation of textile effluents containing orange II and other toxic azo dyes

    Phytochemical screening of Bixa orellana and preliminary antidiabetic, antibacterial, antifibrinolytic, anthelmintic, antioxidant, and cytotoxic activity against lung cancer (A549) cell lines

    No full text
    Bixa orellana (B. Orellana) is a frequently utilized plant that has grown in significance in pharmaceutical applications. The leaves extract of B. orellana was used in the current study for preliminary phytochemical analysis in terms of both quantitative and qualitative, which indicates the presence of phenols, alkaloids, and flavonoids. Furthermore, the extract demonstrated antifungal activity at 30 mm zone of clearance against Candida albicans and antibacterial activity at 16 mm zone of clearance against Bacillus nakamuria by well diffusion method against different strains. The plant extract showed a MIC of 20 µg/mL and MBC of 157.11 µg/mL against E. coli by ELISA and broth dilution method, respectively. To evaluate the phytochemicals in the extract, further purification of the extract by TLC, column chromatography, and component analysis by GC–MS, which reported 18 components, and UV spectrum were performed. A number of therapeutic applications for the extract were observed, including antidiabetic activity (anti-glucosidase) of 98.34% inhibition at 100 µg/mL, anti-lipase of 100% inhibition at 100 µg/mL, and anti-amylase activity of 100% inhibition at 100 µg/mL, antioxidant activity (anti-DPPH activity) of 59.74% inhibition at 100 µg/mL, anthelmintic at 1 min by 1000 µg/mL, antifibrinolytic at 20 secs by 1000 µg/mL and cytotoxic activity against A549 lung cell lines, wherein, the cell viability was below 40 % at the highest dose (100 µg/mL), with an IC50 value of 39.9 µg/mL

    Comparative Assessment of Antimicrobial Efficacy of Seven Surface Disinfectants against Eight Bacterial Strains in Saudi Arabia: An In Vitro Study

    No full text
    Environmental conditions in hospitals facilitate the growth and spread of pathogenic bacteria on surfaces such as floors, bed rails, air ventilation units, and mobile elements. These pathogens may be eliminated with proper disinfecting processes, including the use of appropriate surface disinfectants. In this study, we aimed to evaluate of the antibacterial effects of seven surface disinfectants (HAMAYA, DAC, AJAX, Jif, Mr. MUSCLE, CLOROX, and BACTIL) against eight bacterial strains Klebsiella pneumoniae, Enterobacter aerogenes, Acinetobacter baumannii, Serratia marcescens, Escherichia coli, vancomycin-resistant Enterococcus faecalis-ATCC 51299, methicillin-resistant Staphylococcus aureus-ATCC 43300, and Pseudomonas aeruginosa-ATCC 1544, using two methods. The first was to determine the effective contact time of disinfectant against the tested bacterial strains, and the second was an assessment of the disinfection efficacy of each disinfectant on six types of contaminated surfaces with on a mixture of the eight tested bacterial strains. The results showed the efficacy of the disinfectants against the tested strains depending on the effective contact time. BACTIL disinfectant showed an efficacy of 100% against all tested strains at the end of the first minute of contact time. HAMAYA, DAC, Jif, Mr. MUSCLE, and CLOROX showed 100% efficiency at the end of the fourth, fifth, sixth, seventh, and fourteenth minutes, respectively, while AJAX disinfectant required nineteen minutes of contact time to show 100% efficacy against all tested strains
    corecore