69 research outputs found
An Active Learning Algorithm for Ranking from Pairwise Preferences with an Almost Optimal Query Complexity
We study the problem of learning to rank from pairwise preferences, and solve
a long-standing open problem that has led to development of many heuristics but
no provable results for our particular problem. Given a set of
elements, we wish to linearly order them given pairwise preference labels. A
pairwise preference label is obtained as a response, typically from a human, to
the question "which if preferred, u or v?u,v\in V{n\choose 2}$ possibilities only. We present an active learning algorithm for
this problem, with query bounds significantly beating general (non active)
bounds for the same error guarantee, while almost achieving the information
theoretical lower bound. Our main construct is a decomposition of the input
s.t. (i) each block incurs high loss at optimum, and (ii) the optimal solution
respecting the decomposition is not much worse than the true opt. The
decomposition is done by adapting a recent result by Kenyon and Schudy for a
related combinatorial optimization problem to the query efficient setting. We
thus settle an open problem posed by learning-to-rank theoreticians and
practitioners: What is a provably correct way to sample preference labels? To
further show the power and practicality of our solution, we show how to use it
in concert with an SVM relaxation.Comment: Fixed a tiny error in theorem 3.1 statemen
Online Ranking: Discrete Choice, Spearman Correlation and Other Feedback
Given a set of objects, an online ranking system outputs at each time
step a full ranking of the set, observes a feedback of some form and suffers a
loss. We study the setting in which the (adversarial) feedback is an element in
, and the loss is the position (0th, 1st, 2nd...) of the item in the
outputted ranking. More generally, we study a setting in which the feedback is
a subset of at most elements in , and the loss is the sum of the
positions of those elements.
We present an algorithm of expected regret over a time
horizon of steps with respect to the best single ranking in hindsight. This
improves previous algorithms and analyses either by a factor of either
, a factor of or by improving running
time from quadratic to per round. We also prove a matching lower
bound. Our techniques also imply an improved regret bound for online rank
aggregation over the Spearman correlation measure, and to other more complex
ranking loss functions
Almost Optimal Unrestricted Fast Johnson-Lindenstrauss Transform
The problems of random projections and sparse reconstruction have much in
common and individually received much attention. Surprisingly, until now they
progressed in parallel and remained mostly separate. Here, we employ new tools
from probability in Banach spaces that were successfully used in the context of
sparse reconstruction to advance on an open problem in random pojection. In
particular, we generalize and use an intricate result by Rudelson and Vershynin
for sparse reconstruction which uses Dudley's theorem for bounding Gaussian
processes. Our main result states that any set of real
vectors in dimensional space can be linearly mapped to a space of dimension
k=O(\log N\polylog(n)), while (1) preserving the pairwise distances among the
vectors to within any constant distortion and (2) being able to apply the
transformation in time on each vector. This improves on the best
known achieved by Ailon and Liberty and by Ailon and Chazelle.
The dependence in the distortion constant however is believed to be
suboptimal and subject to further investigation. For constant distortion, this
settles the open question posed by these authors up to a \polylog(n) factor
while considerably simplifying their constructions
- …