1,549 research outputs found

    Observation of near-quantum-limited velocity distributions of a levitated particle

    Full text link
    We demonstrate time-of-flight measurements for an ultracold levitated nanoparticle and reveal its translational velocity in the quantum regime. We discover that the velocity distributions obtained with repeated measurements are significantly broadened via librational motions of the nanoparticle. Under feedback cooling on all the librational motions, we recover the velocity distributions in reasonable agreement with an expectation from the occupation number, with approximately twice the width of the quantum limit. The strong impact of librational motions on the translational motions is understood as a result of the deviation between the libration center and the center of mass, induced by the asymmetry of the nanoparticle. Our results elucidate the importance of the control over librational motions and establish the basis for exploring quantum mechanical properties of levitated nanoparticles in terms of their velocity.Comment: 7 pages, 7 file

    Direct evaporative cooling of 41K into a Bose-Einstein condensate

    Full text link
    We have investigated the collisional properties of 41K atoms at ultracold temperature. To show the possibility to use 41K as a coolant, a Bose-Einstein condensate of 41K atoms in the stretched state (F=2, m_F=2) was created for the first time by direct evaporation in a magnetic trap. An upper bound of three body loss coefficient for atoms in the condensate was determined to be 4(2) 10^{-29} cm -6 s-1. A Feshbach resonance in the F=1, m_F=-1 state was observed at 51.42(5) G, which is in good agreement with theoretical prediction.Comment: 4 pages, 4 figure

    Coherent transfer of photoassociated molecules into the rovibrational ground state

    Full text link
    We report on the direct conversion of laser-cooled 41K and 87Rb atoms into ultracold 41K87Rb molecules in the rovibrational ground state via photoassociation followed by stimulated Raman adiabatic passage. High-resolution spectroscopy based on the coherent transfer revealed the hyperfine structure of weakly bound molecules in an unexplored region. Our results show that a rovibrationally pure sample of ultracold ground-state molecules is achieved via the all-optical association of laser-cooled atoms, opening possibilities to coherently manipulate a wide variety of molecules.Comment: 4 pages, 4 figure

    Predicting and verifying transition strengths from weakly bound molecules

    Full text link
    We investigated transition strengths from ultracold weakly bound 41K87Rb molecules produced via the photoassociation of laser-cooled atoms. An accurate potential energy curve of the excited state (3)1Sigma+ was constructed by carrying out direct potential fit analysis of rotational spectra obtained via depletion spectroscopy. Vibrational energies and rotational constants extracted from the depletion spectra of v'=41-50 levels were combined with the results of the previous spectroscopic study, and they were used for modifying an ab initio potential. An accuracy of 0.14% in vibrational level spacing and 0.3% in rotational constants was sufficient to predict the large observed variation in transition strengths among the vibrational levels. Our results show that transition strengths from weakly bound molecules are a good measure of the accuracy of an excited state potential.Comment: 7 pages, 7 figure

    Bose-Einstein Condensation of Erbium

    Full text link
    We report on the achievement of Bose-Einstein condensation of erbium atoms and on the observation of magnetic Feshbach resonances at low magnetic field. By means of evaporative cooling in an optical dipole trap, we produce pure condensates of 168^{168}Er, containing up to 7×1047 \times 10^{4} atoms. Feshbach spectroscopy reveals an extraordinary rich loss spectrum with six loss resonances already in a narrow magnetic-field range up to 3 G. Finally, we demonstrate the application of a low-field Feshbach resonance to produce a tunable dipolar Bose-Einstein condensate and we observe its characteristic d-wave collapse.Comment: 4 pages, 3 figure
    • …
    corecore