234 research outputs found

    Analytical Formulas of Molecular Ion Abundances and N2H+ Ring in Protoplanetary Disks

    Get PDF
    We investigate the chemistry of ion molecules in protoplanetary disks, motivated by the detection of N2_2H+^+ ring around TW Hya. While the ring inner radius coincides with the CO snow line, it is not apparent why N2_2H+^+ is abundant outside the CO snow line in spite of the similar sublimation temperatures of CO and N2_2. Using the full gas-grain network model, we reproduced the N2_2H+^+ ring in a disk model with millimeter grains. The chemical conversion of CO and N2_2 to less volatile species (sink effect hereinafter) is found to affect the N2_2H+^+ distribution. Since the efficiency of the sink depends on various parameters such as activation barriers of grain surface reactions, which are not well constrained, we also constructed the no-sink model; the total (gas and ice) CO and N2_2 abundances are set constant, and their gaseous abundances are given by the balance between adsorption and desorption. Abundances of molecular ions in the no-sink model are calculated by analytical formulas, which are derived by analyzing the full-network model. The N2_2H+^+ ring is reproduced by the no-sink model, as well. The 2D (R-Z) distribution of N2_2H+^+, however, is different among the full-network model and no-sink model. The column density of N2_2H+^+ in the no-sink model depends sensitively on the desorption rate of CO and N2_2, and the flux of cosmic ray. We also found that N2_2H+^+ abundance can peak at the temperature slightly below the CO sublimation, even if the desorption energies of CO and N2_2 are the same.Comment: accepted to Ap

    From Prestellar to Protostellar Cores II. Time Dependence and Deuterium Fractionation

    Full text link
    We investigate the molecular evolution and D/H abundance ratios that develop as star formation proceeds from a dense-cloud core to a protostellar core, by solving a gas-grain reaction network applied to a 1-D radiative hydrodynamic model with infalling fluid parcels. Spatial distributions of gas and ice-mantle species are calculated at the first-core stage, and at times after the birth of a protostar. Gas-phase methanol and methane are more abundant than CO at radii r100r\lesssim 100 AU in the first-core stage, but gradually decrease with time, while abundances of larger organic species increase. The warm-up phase, when complex organic molecules are efficiently formed, is longer-lived for those fluid parcels in-falling at later stages. The formation of unsaturated carbon chains (warm carbon-chain chemistry) is also more effective in later stages; C+^+, which reacts with CH4_4 to form carbon chains, increases in abundance as the envelope density decreases. The large organic molecules and carbon chains are strongly deuterated, mainly due to high D/H ratios in the parent molecules, determined in the cold phase. We also extend our model to simulate simply the chemistry in circumstellar disks, by suspending the 1-D infall of a fluid parcel at constant disk radii. The species CH3_3OCH3_3 and HCOOCH3_3 increase in abundance in 10410510^4-10^5 yr at the fixed warm temperature; both also have high D/H ratios.Comment: accepted to ApJ. 55 pages, 7 figures, 3 table

    The physical and chemical processes in protoplanetary disks: constraints on the composition of comets

    Full text link
    We review the recent observations of protoplanetary disks together with relevant theoretical studies with an emphasis on the evolution of volatiles. In the last several years Atacama Large Millimeter/submillimeter Array (ALMA) provided evidence of grain growth, gas-dust decoupling, and sub-structures such as rings and gaps in the dust continuum. Molecular line observations revealed radial and vertical distributions of molecular abundances and also provided significant constraints on the gas dynamics such as turbulence. While sub-millimeter and millimeter observations mainly probe the gas and dust outside the radius of several au, ice and inner warm gas are investigated at shorter wavelengths. Gas and dust dynamics are key to connecting these observational findings. One of the emerging trends is inhomogeneous distributions of elemental abundances, most probably due to dust-gas decoupling.Comment: COMETS III, in press. Table 1 and some contents are corrected and updated from the previous version (e.g. refer to JWST observations
    corecore