128 research outputs found

    Interferon gamma (IFN-γ) disrupts energy expenditure and metabolic homeostasis by suppressing SIRT1 transcription

    Get PDF
    Chronic inflammation impairs metabolic homeostasis and is intimately correlated with the pathogenesis of type 2 diabetes. The pro-inflammatory cytokine IFN-γ is an integral part of the metabolic inflammation circuit and contributes significantly to metabolic dysfunction. The underlying mechanism, however, remains largely unknown. In the present study, we report that IFN-γ disrupts the expression of genes key to cellular metabolism and energy expenditure by repressing the expression and activity of SIRT1 at the transcription level. Further analysis reveals that IFN-γ requires class II transactivator (CIITA) to repress SIRT1 transcription. CIITA, once induced by IFN-γ, is recruited to the SIRT1 promoter by hypermethylated in cancer 1 (HIC1) and promotes down-regulation of SIRT1 transcription via active deacetylation of core histones surrounding the SIRT1 proximal promoter. Silencing CIITA or HIC1 restores SIRT1 activity and expression of metabolic genes in skeletal muscle cells challenged with IFN-γ. Therefore, our data delineate an IFN-γ/HIC1/CIITA axis that contributes to metabolic dysfunction by suppressing SIRT1 transcription in skeletal muscle cells and as such shed new light on the development of novel therapeutic strategies against type 2 diabetes

    Cytokine concentration in peripheral blood of patients with colorectal cancer

    Get PDF
    IntroductionThe role of tumour secretory cytokines and peripheral circulatory cytokines in tumour progression has received increasing attention; however, the role of tumour-related inflammatory cytokines in colorectal cancer (CRC) remains unclear. In this study, the concentrations of various cytokines in the peripheral blood of healthy controls and patients with CRC at different stages were compared.MethodsPeripheral blood samples from 4 healthy participants and 22 colorectal cancer patients were examined. Luminex beads were used to evaluate concentration levels of 40 inflammatory cytokines in peripheral blood samples.ResultsIn peripheral blood, compared with healthy controls and early stage (I + II) CRC patients, advanced CRC (III + IV) patients had increased concentrations of mononuclear/macrophage chemotactic-related proteins (CCL7, CCL8, CCL15, CCL2, and MIF), M2 polarization-related factors (IL-1β, IL-4), neutrophil chemotactic and N2 polarization-related cytokines (CXCL2, CXCL5, CXCL6, IL-8), dendritic cells (DCs) chemotactic-related proteins (CCL19, CCL20, and CCL21), Natural killer (NK) cell related cytokines (CXCL9, CXCL10), Th2 cell-related cytokines (CCL1, CCL11, CCL26), CXCL12, IL-2, CCL25, and CCL27, and decreased IFN-γ and CX3CL1 concentrations. The differential upregulation of cytokines in peripheral blood was mainly concentrated in CRC patients with distant metastasis and was related to the size of the primary tumour; however, there was no significant correlation between cytokine levels in peripheral blood and the propensity and mechanism of lymph node metastasis.DiscussionDifferent types of immune cells may share the same chemokine receptors and can co-localise in response to the same chemokines and exert synergistic pro-tumour or anti-tumour functions in the tumour microenvironment. Chemokines and cytokines affect tumour metastasis and prognosis and may be potential targets for treatment

    Iron Oxide Nanoparticle Based Contrast Agents for Magnetic Resonance Imaging

    No full text
    Magnetic iron oxide nanoparticles (MIONs) have attracted enormous attention due to their wide applications, including for magnetic separation, for magnetic hyperthermia, and as contrast agents for magnetic resonance imaging (MRI). This review article introduces the methods of synthesizing MIONs, and their application as MRI contrast agents. Currently, many methods have been reported for the synthesis of MIONs. Herein, we only focus on the liquid-based synthesis methods including aqueous phase methods and organic phase methods. In addition, the MIONs larger than 10 nm can be used as negative contrast agents and the recently emerged extremely small MIONs (ES-MIONs) smaller than 5 nm are potential positive contrast agents. In this review, we focus on the ES-MIONs because ES-MIONs avoid the disadvantages of MION-based T-2- and gadolinium chelate-based T-1-weighted contrast agents

    Current detection technologies for circulating tumor cells

    No full text
    Circulating tumor cells (CTCs) are cancer cells that circulate in the blood stream after being naturally shed from original or metastatic tumors, and can lead to a new fatal metastasis. CTCs have become a hotspot research field during the last decade. Detection of CTCs, as a liquid biopsy of tumors, can be used for early diagnosis of cancers, earlier evaluation of cancer recurrence and chemotherapeutic efficacy, and choice of individual sensitive anti-cancer drugs. Therefore, CTC detection is a crucial tool to fight against cancer. Herein, we classify the currently reported CTC detection technologies, introduce some representative samples for each technology, conclude the advantages and limitations, and give a future perspective including the challenges and opportunities of CTC detection

    Predictor-Based Motion Tracking Control for Cloud Robotic Systems with Delayed Measurements

    No full text
    This paper addresses the problem of motion prediction and tracking control for cloud robotic systems with time-varying delays in measurements. A novel method using an observer-based structure for position and velocity prediction is developed to estimate the real-time information of robot manipulator. The prediction error can converge to zero even if model uncertainties exist in the robot manipulator. Based on the predicted positions and velocities, some sufficient conditions are derived to design suitable tracking controllers such that semi-globally uniformly ultimately bounded tracking performance of the predictor–controller couple can be guaranteed. Finally, the effectiveness and robustness to model uncertainties of the proposed method are verified by a two degree-of-freedom (DOF) robot system

    Iron Oxide Nanoparticle Based Contrast Agents for Magnetic Resonance Imaging

    No full text

    Effects of school-based neuromuscular training on fundamental movement skills and physical fitness in children: a systematic review

    No full text
    Objectives The primary purpose of this review was to clarify the effects of school-based integrated neuromuscular training (INT) on fundamental movement skills and physical fitness in children. The secondary purpose was to examine whether school-based INT intervention is superior to physical education (PE) intervention in enhancing motor skills and fitness. Methods A systematic literature search was performed in four electronic databases: PubMed, Web of Science, MEDLINE (EBSCOhost), and Cochrane Central Register of Controlled Trials. The last search was performed on December 21, 2021, and was limited to the English language, human species, and peer reviewed journals. Randomized controlled trials and cluster randomized controlled trials that examine the effects of school-based INT on motor skills and/or fitness in healthy children who were aged up to 14 years old were included. Moreover, studies included in this study should compare school-based INT-induced adaptions with those generated by PE interventions. Studies that involve athletic children and additional exercise training were excluded. The Physiotherapy Evidence Database (PEDro) scale was used to assess the quality of the study. Results Of 1,026 studies identified, seven original trials that meet the inclusion criteria were included in this review. Based on the PEDro scale, the PEDro score of seven studies was between six and eight points with a mean score of 5.29. Among the seven studies included in this study, four studies assessed physical fitness including muscular fitness (n = 4), speed (n = 3), endurance (n = 2), and flexibility (n = 2). Three studies examined the effects of INT on postural control and three studies explored its effects on motor skills. Concerning movement competence, significant and greater improvements in postural control and fundamental motor skills were observed following school-based INT interventions compared to PE intervention in two and three studies, respectively. Regarding physical fitness, neuromuscular training significantly increased muscular fitness, speed, endurance, flexibility in three, two, one, and one studies, respectively. However, only greater improvements in muscle fitness were observed in school-based INT group compared to PE group. The main limitations of this review were the lack of descriptions of training intensity and volume and the low methodological quality of the included studies. Conclusion This review provides evidence that school-based neuromuscular training programs are superior to PE lessons in improving postural control, fundamental motor skills and muscular strength. Therefore, INT could be incorporated into traditional physical education classes in school. Trial registration number: CRD42022297349

    Phylogenetic analysis of cultivable bacteria isolated from Arctic sea-ice

    Get PDF
    Phylogenetic analysis based on 16S rDNA of 8 strains of cultivable bacteria isolated from Arctic sea ice was studied. The results showed that strain BJ1 belonged to genus Planococcus, which was a genus of low mole percent G+C gram positive bacteria, strain BJ6 belonged to genus Burkholderia of β- proteobacteria and the rest 6 strain all belonged to Y- proteobacteria, of which strain BJ8 was a species of Pseudoalteromonas, strain BJ2-BJ5 and BJ7 were members of genus Psychrobacter. Phylogenetic analysis also indicated that bacteria of genus Psychrobacter of the isolates formed a relatively independent phylogenetic cluster in comparision with other bacteria belonged to genus Psychrobacter
    corecore