3 research outputs found

    Oxyethylated Fluoresceine—(thia)calix[4]arene Conjugates: Synthesis and Visible-Light Photoredox Catalysis in Water–Organic Media

    No full text
    Fluorescent derivatives attract the attention of researchers for their use as sensors, photocatalysts and for the creation of functional materials. In order to create amphiphilic fluorescent derivatives of calixarenes, a fluorescein derivative containing oligoethylene glycol and propargyl groups was obtained. The resulting fluorescein derivative was introduced into three different (thia)calix[4]arene azide derivatives. For all synthesized compounds, the luminescence quantum yields have been established in different solvents. Using UV-visible spectroscopy, dynamic light scattering, as well as transmission and confocal microscopy, aggregation of macrocycles was studied. It was evaluated that calixarene derivatives with alkyl substituents form spherical aggregates, while symmetrical tetrafluorescein-containing thiacalix[4]arene forms extended worm-like aggregates. The macrocycle containing tetradecyl fragments was found to be the most efficient in photoredox ipso-oxidation of phenylboronic acid. In addition, it was shown that in a number of different electron donors (NEt3, DABCO and iPr2EtN), the photoredox ipso-oxidation proceeds best with triethylamine. It has been shown that a low molecular weight surfactant Triton-X100 can also improve the photocatalytic abilities of an oligoethylene glycol fluorescein derivative, thus showing the importance of a combination of micellar and photoredox catalysis

    New Calix[4]arene—Fluoresceine Conjugate by Click Approach—Synthesis and Preparation of Photocatalytically Active Solid Lipid Nanoparticles

    No full text
    New fluorescent systems for photocatalysis, sensors, labeling, etc., are in great demand. Amphiphilic ones are of special interest since they can form functional colloidal systems that can be used in aqueous solutions. A new macrocycle platform for click chemistry and its adduct with o-propargylfluoresceine was synthesized and characterized using modern physical techniques. Nanosized solid lipid nanoparticles (SLNs) from the calixarene—fluoresceine adduct were synthesized through the solvent injection technique and well-characterized in the solution and in solid state using light-scattering and microscopy methods. The maximum fluorescence intensity of the SLNs was found to be in the pH range from 7 to 10. The Förster resonance energy transfer (FRET) efficiency from SLNs to rhodamine 6g was found to be 97.8%. Finally, pure SLNs and the FRET system SLNs—Rh6G were tested in model photocatalytic ipso oxidative hydroxylation of phenylboronic acid under blue LED light. The SLNs—Rh6G system was found to be the best, giving an almost qualitative phenol yield, which was shown by HPLC-UV analysis

    New Calix[4]arene—Fluoresceine Conjugate by Click Approach—Synthesis and Preparation of Photocatalytically Active Solid Lipid Nanoparticles

    No full text
    New fluorescent systems for photocatalysis, sensors, labeling, etc., are in great demand. Amphiphilic ones are of special interest since they can form functional colloidal systems that can be used in aqueous solutions. A new macrocycle platform for click chemistry and its adduct with o-propargylfluoresceine was synthesized and characterized using modern physical techniques. Nanosized solid lipid nanoparticles (SLNs) from the calixarene—fluoresceine adduct were synthesized through the solvent injection technique and well-characterized in the solution and in solid state using light-scattering and microscopy methods. The maximum fluorescence intensity of the SLNs was found to be in the pH range from 7 to 10. The Förster resonance energy transfer (FRET) efficiency from SLNs to rhodamine 6g was found to be 97.8%. Finally, pure SLNs and the FRET system SLNs—Rh6G were tested in model photocatalytic ipso oxidative hydroxylation of phenylboronic acid under blue LED light. The SLNs—Rh6G system was found to be the best, giving an almost qualitative phenol yield, which was shown by HPLC-UV analysis
    corecore