32 research outputs found

    Haptoglobin and Sickle Cell Polymorphisms and Risk of Active Trachoma in Gambian Children

    Get PDF
    BACKGROUND: Susceptibility and resistance to trachoma, the leading infectious cause of blindness, have been associated with a range of host genetic factors. In vitro studies of the causative organism, Chlamydia trachomatis, demonstrate that iron availability regulates its growth, suggesting that host genes involved in regulating iron status and/or availability may modulate the risk of trachoma. The objective was to investigate whether haptoglobin (Hp) haplotypes constructed from the functional polymorphism (Hp1/Hp2) plus the functional promoter SNPs -61A-C (rs5471) and -101C-G (rs5470), or sickle cell trait (HbAS, rs334) were associated with risk of active trachoma when stratified by age and sex, in rural Gambian children. METHODOLOGY AND PRINCIPAL FINDINGS: In two cross sectional surveys of children aged 6-78 months (n = 836), the prevalence of the clinical signs of active trachoma was 21.4%. Within boys, haplotype E (-101G, -61A, Hp1), containing the variant allele of the -101C-G promoter SNP, was associated with a two-fold increased risk of active trachoma (OR = 2.0 [1.17-3.44]). Within girls, an opposite association was non-significant (OR = 0.58 [0.32-1.04]; P = 0.07) and the interaction by sex was statistically significant (P = 0.001). There was no association between trachoma and HbAS. CONCLUSIONS: These data indicate that genetic variation in Hp may affect susceptibility to active trachoma differentially by sex in The Gambia

    Why Functional Pre-Erythrocytic and Bloodstage Malaria Vaccines Fail: A Meta-Analysis of Fully Protective Immunizations and Novel Immunological Model

    Get PDF
    Background: Clinically protective malaria vaccines consistently fail to protect adults and children in endemic settings, and at best only partially protect infants. Methodology/Principal Findings: We identify and evaluate 1916 immunization studies between 1965-February 2010, and exclude partially or nonprotective results to find 177 completely protective immunization experiments. Detailed reexamination reveals an unexpectedly mundane basis for selective vaccine failure: live malaria parasites in the skin inhibit vaccine function. We next show published molecular and cellular data support a testable, novel model where parasite-host interactions in the skin induce malaria-specific regulatory T cells, and subvert early antigen-specific immunity to parasite-specific immunotolerance. This ensures infection and tolerance to reinfection. Exposure to Plasmodium-infected mosquito bites therefore systematically triggers immunosuppression of endemic vaccine-elicited responses. The extensive vaccine trial data solidly substantiate this model experimentally. Conclusions/Significance: We conclude skinstage-initiated immunosuppression, unassociated with bloodstage parasites, systematically blocks vaccine function in the field. Our model exposes novel molecular and procedural strategies to significantly and quickly increase protective efficacy in both pipeline and currently ineffective malaria vaccines, and forces fundamental reassessment of central precepts determining vaccine development. This has major implications fo

    Who’s Laughing Now? Comic Currents for a New Irish Audience

    No full text

    Identification of minimal human MHC-restricted CD8+ T-cell epitopes within the Plasmodium falciparum circumsporozoite protein (CSP)

    Get PDF
    Background: Plasmodium falciparum circumsporozoite protein (CSP) is a leading malaria vaccine candidate antigen, known to elicit protective antibody responses in humans (RTS,S vaccine). Recently, a DNA prime / adenovirus (Ad) vector boost vaccine encoding CSP and a second P. falciparum antigen, apical membrane antigen-1, also elicited sterile protection, but in this case associated with interferon gamma ELISpot and CD8+ T cell but not antibody responses. The finding that CSP delivered by an appropriate vaccine platform likely elicits protective cell-mediated immunity provided a rationale for identifying class I-restricted epitopes within this leading vaccine candidate antigen. Methods: Limited samples of peripheral blood mononuclear cells from clinical trials of the Ad vaccine were used to identify CD8+ T cell epitopes within pools of overlapping 15mer peptides spanning portions of CSP that stimulated recall responses. Computerized algorithms (NetMHC) predicted 17 minimal class I-restricted 9-10mer epitopes within fifteen 15mers positive in ELISpot assay using PBMC from 10 HLA-matched study subjects. Four additional epitopes were subsequently predicted using NetMHC, matched to other study subjects without initial 15mer ELISpot screening. Nine of the putative epitopes were synthesized and tested by ELISpot assay, and six of these nine were further tested for CD8+ T cell responses by ELISpot CD4+ and CD8+ T cell-depletion and flow cytometry assays for evidence of CD8+ T cell dependence. Results: Each of the nine putative epitopes, all sequence-conserved, recalled responses from HLA-matched CSP-immunized research subjects. Four shorter sequences contained within these sequences were identified using NetMHC predictions and may have contributed to recall responses. Five (9-10mer) epitopes were confirmed to be targets of CD8+ T cell responses using ELISpot depletion and ICS assays. Two 9mers among these nine epitopes were each restricted by two HLA supertypes (A01/B07; A01A24/A24) and one 9mer was restricted by three HLA supertypes (A01A24/A24/B27) indicating that some CSP class I-restricted epitopes, like DR epitopes, may be HLA-promiscuous. Conclusions: This study identified nine and confirmed five novel class I epitopes restricted by six HLA supertypes, suggesting that an adenovirus-vectored CSP vaccine would be immunogenic and potentially protective in genetically diverse populations
    corecore