5 research outputs found

    POTENTIAL GENOTOXICITY AND HISTOPATHOLOGICAL ALTERATION EVALUATION OF HEPTEX®

    Get PDF
    Objective: The present study was performed in order to evaluate potential genotoxicity and the histopathological alteration of a traditional herbal prescription Heptex that used in the treatment of liver disease.Methods: The genotoxicity were evaluated using the in vivo chromosome aberration and micronucleus assays in bone marrow cells of male and female Sprague-Dawley rats. In addition, in vitro chromosome aberration assay in Chinese hamster ovary (CHO) cells and bacterial reverse mutations assay in Salmonella typhimurium strains and Escherichia coli (WP2-uvrA/) with and without metabolic activation system (S9 mix) were performed. Histopathological study was conducted in liver, ovary and testis tissue of Sprague-Dawley rats.Results: The genotoxicity assessment showed that Heptex did not significantly increase the number of chromosomal aberrations and frequencies of micro nucleated polychromatic erythrocytes in bone marrow cells of both male and female rats. In addition, there were no increases in the number of revertant colonies at any concentrations of Heptex used in the study. Heptex did not produce any structural aberration in CHO cells in the presence or absence of S9 mix. In addition, there were no histopathological changes induced by Heptex in rat liver, ovary and testis.Conclusion: Based on abovementioned findings, we can conclude that Heptex is generally non-toxic and does not exhibit genotoxicity or histopathological alteration.Â

    Improved effect of pumpkin seed oil against the bisphenol-A adverse effects in male mice

    No full text
    The present study was conducted to evaluate the ameliorative role of pumpkin seed oil (PSO) against potential adverse effects of bisphenol-A (BPA) in male mice. BPA was administered to the mice orally at a dose of 50 mg/kg body weight once a day for 28 successive days. While, PSO was administered to the mice orally at 1 mL/kg b w either before, with or after treatment of BPA, once a day for 28 successive days. The studied parameters were DNA damage evaluation using comet assay in liver and testes cells and micronucleus test in bone marrow; and histopathological examination of liver and testes tissues. Results revealed that BPA induced DNA damage in tested cells and marked histopathological alterations in liver and testes. In contrast, PSO treatments alleviated DNA damage and improved the histopathological alterations in liver and testes tissues. Furthermore, administration of mice with the PSO before BPA treatment was the best regimen in the alleviation of the adverse effects of BPA, followed by administration of PSO after then with treatment of BPA. It can be concluded that PSO may has a protective role against BPA genotoxicity and histopathological alterations in male mice. Keywords: Pumpkin seed oil, Bisphenol-A, Genotoxicity, Micronucleus test, Comet assay, Histopatholog

    Evaluation of Mango Byproduct Extracts as Antioxidant Against Pb-Acetate-Induced Oxidative Stress and Genotoxicity in Mice

    No full text
    The antioxidant and antiproliferative properties of mango by-products were investigated. This study was carried out to evaluate the protective role of mango peel or kernel defatted extracts against Pb-acetate adverse effects on oxidant/antioxidant status, liver dysfunction biomarkers, histopathological changes and genotoxicity in male mice. Total phenolic content and antioxidant activity of both extracts were evaluated. Two doses of both extracts (50 and 100 mg/kg) were used to evaluate their role against the toxicity of Pb-acetate (500 ppm). Mice given mango extracts with Pb-acetate had significantly lower plasma MDA, AST and ALT and higher glutathione than mice given Pb-acetate alone. Mango extracts prevented the histopathological changes in liver induced by Pb-acetate and decreased the cytotoxicity of lead by increasing the ratio of PCE/NCE. Mango extract treatment reduced the DNA damage induced by Pb-acetate in liver as demonstrated by a reduction in micronuclei and decrease in tail length, tail DNA% and Olive tail moment. It can be concluded that mango by-product extracts have potential to protect from oxidative stress and genotoxicity of lead

    First study of sperm mediated gene transfer in Egyptian river buffalo

    No full text
    The present study was carried out to find the best treatments for enhancing the ration of insertion of a desired gene construct (pEGFP-N1) onto the sperm of buffalo as the first step for the production of transgenic buffalo using sperm mediated gene transfer (SMGT). The tested conditions were plasmid DNA concentration, sperm concentration, transfecting agent concentration: Dimethyle sulphoxide (DMSO) and time of transfection. The study proved that the best conditions for producing transgenic embryos were incubation sperm solution its concentration is 107/ml sperm with 3% DMSO: with 20 µg/ml from the linarized DNA, for 15 min at 4 °C are the best conditions to produce transgenic buffalo embryo using sperm mediated gene transfer
    corecore