101 research outputs found

    Stress Urinary Incontinence: An Unsolved Clinical Challenge

    Full text link
    Stress urinary incontinence is still a frequent problem for women and men, which leads to pronounced impairment of the quality of life and withdrawal from the social environment. Modern diagnostics and therapy improved the situation for individuals affected. But there are still limits, including the correct diagnosis of incontinence and its pathophysiology, as well as the therapeutic algorithms. In most cases, patients are treated with a first-line regimen of drugs, possibly in combination with specific exercises and electrophysiological stimulation. When conservative options are exhausted, minimally invasive surgical therapies are indicated. However, standard surgeries, especially the application of implants, do not pursue any causal therapy. Non-absorbable meshes and ligaments have fallen into disrepute due to complications. In numerous countries, classic techniques such as colposuspension have been revived to avoid implants. Except for tapes in the treatment of stress urinary incontinence in women, the literature on randomized controlled studies is insufficient. This review provides an update on pharmacological and surgical treatment options for stress urinary incontinence; it highlights limitations and formulates wishes for the future from a clinical perspective

    Comparison of marker gene expression in chondrocytes from patients receiving autologous chondrocyte transplantation versus osteoarthritis patients

    Get PDF
    Currently, autologous chondrocyte transplantation (ACT) is used to treat traumatic cartilage damage or osteochondrosis dissecans, but not degenerative arthritis. Since substantial refinements in the isolation, expansion and transplantation of chondrocytes have been made in recent years, the treatment of early stage osteoarthritic lesions using ACT might now be feasible. In this study, we determined the gene expression patterns of osteoarthritic (OA) chondrocytes ex vivo after primary culture and subculture and compared these with healthy chondrocytes ex vivo and with articular chondrocytes expanded for treatment of patients by ACT. Gene expression profiles were determined using quantitative RT-PCR for type I, II and X collagen, aggrecan, IL-1β and activin-like kinase-1. Furthermore, we tested the capability of osteoarthritic chondrocytes to generate hyaline-like cartilage by implanting chondrocyte-seeded collagen scaffolds into immunodeficient (SCID) mice. OA chondrocytes ex vivo showed highly elevated levels of IL-1β mRNA, but type I and II collagen levels were comparable to those of healthy chondrocytes. After primary culture, IL-1β levels decreased to baseline levels, while the type II and type I collagen mRNA levels matched those found in chondrocytes used for ACT. OA chondrocytes generated type II collagen and proteoglycan-rich cartilage transplants in SCID mice. We conclude that after expansion under suitable conditions, the cartilage of OA patients contains cells that are not significantly different from those from healthy donors prepared for ACT. OA chondrocytes are also capable of producing a cartilage-like tissue in the in vivo SCID mouse model. Thus, such chondrocytes seem to fulfil the prerequisites for use in ACT treatment

    Stress-vs-time signals allow the prediction of structurally catastrophic events during fracturing of immature cartilage and predetermine the biomechanical, biochemical, and structural impairment

    Get PDF
    Objective Trauma-associated cartilage fractures occur in children and adolescents with clinically significant incidence. Several studies investigated biomechanical injury by compressive forces but the injury-related stress has not been investigated extensively. In this study, we hypothesized that the biomechanical stress occurring during compressive injury predetermines the biomechanical, biochemical, and structural consequences. We specifically investigated whether the stress-vs-time signal correlated with the injurious damage and may allow prediction of cartilage matrix fracturing. Methods Superficial and deeper zones disks (SZDs, DZDs; immature bovine cartilage) were biomechanically characterized, injured (50% compression, 100%/s strain-rate), and re-characterized. Correlations of the quantified functional, biochemical and histological damage with biomechanical parameters were zonally investigated. Results Injured SZDs exhibited decreased dynamic stiffness (by 93.04 ± 1.72%), unresolvable equilibrium moduli, structural damage (2.0 ± 0.5 on a 5-point-damage-scale), and 1.78-fold increased sGAG loss. DZDs remained intact. Measured stress-vs-time-curves during injury displayed 4 distinct shapes, which correlated with histological damage (p < 0.001), loss of dynamic stiffness and sGAG (p < 0.05). Damage prediction in a blinded experiment using stress-vs-time grades was 100%-correct and sensitive to differentiate single/complex matrix disruptions. Correlations of the dissipated energy and maximum stress rise with the extent of biomechanical and biochemical damage reached significance when SZDs and DZDs were analyzed as zonal composites but not separately. Conclusions The biomechanical stress that occurs during compressive injury predetermines the biomechanical, biochemical, and structural consequences and, thus, the structural and functional damage during cartilage fracturing. A novel biomechanical method based on the interpretation of compressive yielding allows the accurate prediction of the extent of structural damage.National Institutes of Health (U.S.) (Grant R01-AR45779)Deutsche Forschungsgemeinschaft (Grant RO2511/1-1)Deutsche Forschungsgemeinschaft (Grant RO2511/2-1)Germany. Federal Ministry of Education and Research (Grant 01KQ0902B TP2

    Osteoclast-independent bone resorption by fibroblast-like cells

    Get PDF
    To date, mesenchymal cells have only been associated with bone resorption indirectly, and it has been hypothesized that the degradation of bone is associated exclusively with specific functions of osteoclasts. Here we show, in aseptic prosthesis loosening, that aggressive fibroblasts at the bone surface actively contribute to bone resorption and that this is independent of osteoclasts. In two separate models (a severe combined immunodeficient mouse coimplantation model and a dentin pit formation assay), these cells produce signs of bone resorption that are similar to those in early osteoclastic resorption. In an animal model of aseptic prosthesis loosening (i.e. intracranially self-stimulated rats), it is shown that these fibroblasts acquire their ability to degrade bone early on in their differentiation. Upon stimulation, such fibroblasts readily release acidic components that lower the pH of their pericellular milieu. Through the use of specific inhibitors, pericellular acidification is shown to involve the action of vacuolar type ATPases. Although fibroblasts, as mesenchymal derived cells, are thought to be incapable of resorbing bone, the present study provides the first evidence to challenge this widely held belief. It is demonstrated that fibroblast-like cells, under pathological conditions, may not only enhance but also actively contribute to bone resorption. These cells should therefore be considered novel therapeutic targets in the treatment of bone destructive disorders

    The geometrical shape of mesenchymal stromal cells measured by quantitative shape descriptors is determined by the stiffness of the biomaterial and by cyclic tensile forces

    Full text link
    Controlling mesenchymal stromal cell (MSC) shape is a novel method for investigating and directing MSC behaviour in vitro. it was hypothesized that specifigc MSC shapes can be generated by using stiffnessâ defined biomaterial surfaces and by applying cyclic tensile forces. Biomaterials used were thin and thick silicone sheets, fibronectin coating, and compacted collagen type I sheets. The MSC morphology was quantified by shape descriptors describing dimensions and membrane protrusions. Nanoscale stiffness was measured by atomic force microscopy and the expression of smooth muscle cell (SMC) marker genes (ACTA2, TAGLN, CNN1) by quantitative reverseâ transcription polymerase chain reaction. Cyclic stretch was applied with 2.5% or 5% amplitudes. Attachment to biomaterials with a higher stiffness yielded more elongated MSCs with fewer membrane protrusions compared with biomaterials with a lower stiffness. For cyclic stretch, compacted collagen sheets were selected, which were associated with the most elongated MSC shape across all investigated biomaterials. As expected, cyclic stretch elongated MSCs during stretch. One hour after cessation of stretch, however, MSC shape was rounder again, suggesting loss of stretchâ induced shape. Different shape descriptor values obtained by different stretch regimes correlated significantly with the expression levels of SMC marker genes. Values of approximately 0.4 for roundness and 3.4 for aspect ratio were critical for the highest expression levels of ACTA2 and CNN1. Thus, specific shape descriptor values, which can be generated using biomaterialâ associated stiffness and tensile forces, can serve as a template for the induction of specific gene expression levels in MSC. Copyright © 2017 John Wiley & Sons, Ltd.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141253/1/term2263.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141253/2/term2263_am.pd

    Rheological and biological properties of a hydrogel support for cells intended for intervertebral disc repair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell-based approaches towards restoration of prolapsed or degenerated intervertebral discs are hampered by a lack of measures for safe administration and placement of cell suspensions within a treated disc. In order to overcome these risks, a serum albumin-based hydrogel has been developed that polymerizes after injection and anchors the administered cell suspension within the tissue.</p> <p>Methods</p> <p>A hydrogel composed of chemically activated albumin crosslinked by polyethylene glycol spacers was produced. The visco-elastic gel properties were determined by rheological measurement. Human intervertebral disc cells were cultured <it>in vitro </it>and <it>in vivo </it>in the hydrogel and their phenotype was tested by reverse-transcriptase polymerase chain reaction. Matrix production and deposition was monitored by immuno-histology and by biochemical analysis of collagen and glycosaminoglycan deposition. Species specific <it>in situ </it>hybridization was performed to discriminate between cells of human and murine origin in xenotransplants.</p> <p>Results</p> <p>The reproducibility of the gel formation process could be demonstrated. The visco-elastic properties were not influenced by storage of gel components. <it>In vitro </it>and <it>in vivo </it>(subcutaneous implants in mice) evidence is presented for cellular differentiation and matrix deposition within the hydrogel for human intervertebral disc cells even for donor cells that have been expanded in primary monolayer culture, stored in liquid nitrogen and re-activated in secondary monolayer culture. Upon injection into the animals, gels formed spheres that lasted for the duration of the experiments (14 days). The expression of cartilage- and disc-specific mRNAs was maintained in hydrogels <it>in vitro </it>and <it>in vivo</it>, demonstrating the maintenance of a stable specific cellular phenotype, compared to monolayer cells. Significantly higher levels of hyaluronan synthase isozymes-2 and -3 mRNA suggest cell functionalities towards those needed for the support of the regeneration of the intervertebral disc. Moreover, mouse implanted hydrogels accumulated 5 times more glycosaminoglycans and 50 times more collagen than the <it>in vitro </it>cultured gels, the latter instead releasing equivalent quantities of glycosaminoglycans and collagen into the culture medium. Matrix deposition could be specified by immunohistology for collagen types I and II, and aggrecan and was found only in areas where predominantly cells of human origin were detected by species specific <it>in situ </it>hybridization.</p> <p>Conclusions</p> <p>The data demonstrate that the hydrogels form stable implants capable to contain a specifically functional cell population within a physiological environment.</p
    corecore