10,792 research outputs found

    A method for the microlensed flux variance of QSOs

    Full text link
    A fast and practical method is described for calculating the microlensed flux variance of an arbitrary source by uncorrelated stars. The required inputs are the mean convergence and shear due to the smoothed potential of the lensing galaxy, the stellar mass function, and the absolute square of the Fourier transform of the surface brightness in the source plane. The mathematical approach follows previous authors but has been generalized, streamlined, and implemented in publicly available code. Examples of its application are given for Dexter and Agol's inhomogeneous-disk models as well as the usual gaussian sources. Since the quantity calculated is a second moment of the magnification, it is only logarithmically sensitive to the sizes of very compact sources. However, for the inferred sizes of actual QSOs, it has some discriminatory power and may lend itself to simple statistical tests. At the very least, it should be useful for testing the convergence of microlensing simulations.Comment: 10 pages, 6 figure

    Topological states and quantized current in helical molecules

    Full text link
    We report a theoretical study of electron transport along helical molecules under an external electric field, which is perpendicular to the helix axis of the molecule. Our results reveal that the topological states could appear in single-helical molecule and double-stranded DNA in the presence of the perpendicular electric field. And these topological states guarantee adiabatic charge pumping across the helical molecules by rotating the electric field in the transverse plane and the pumped current at zero bias voltage is quantized. In addition, the quantized current constitutes multiple plateaus by scanning the Fermi energy as well as the bias voltage, and hold for various model parameters, since they are topologically protected against perturbations. These results could motivate further experimental and theoretical studies in the electron transport through helical molecules, and pave the way to detect topological states and quantized current in the biological systems.Comment: 5 pages, 5 figure

    Spin-Selective Transport of Electron in DNA Double Helix

    Full text link
    The experiment that the high spin selectivity and the length-dependent spin polarization are observed in double-stranded DNA [Science 331{\bf 331}, 894 (2011)], is elucidated by considering the combination of the spin-orbit coupling, the environment-induced dephasing, and the helical symmetry. We show that the spin polarization in double-stranded DNA is significant even in the case of weak spin-orbit coupling, while no spin polarization appears in single-stranded DNA. Furthermore, the underlying physical mechanism and the parameters-dependence of the spin polarization are studied.Comment: 5 pages; 4 figure

    Orbital Kondo effect in a parallel double quantum dot

    Full text link
    We construct a theoretical model to study the orbital Kondo effect in a parallel double quantum dot (DQD). Recently, pseudospin-resolved transport spectroscopy of the orbital Kondo effect in a DQD has been experimentally reported. The experiment revealed that when interdot tunneling is ignored, there exist two and one Kondo peaks in the conductance-bias curve for the pseudospin-non-resolved and pseudospin-resolved cases, respectively. Our theoretical studies reproduce this experimental result. We also investigate the situation of all lead voltages being non-equal (the complete pseudospin-resolved case), and find that there are four Kondo peaks at most in the curve of the conductance versus the pseudospin splitting energy. When the interdot tunneling is introduced, some new Kondo peaks and dips can emerge. Besides, the pseudospin transport and the pseudospin flipping current are also studied in the DQD system. Since the pseudospin transport is much easier to be controlled and measured than the real spin transport, it can be used to study the physical phenomenon related to the spin transport.Comment: 18 pages, 7 figures, accepted by J. Phys.: Condens. Matter in September 201

    Effect of gate voltage on spin transport along α\alpha-helical protein

    Full text link
    Recently, the chiral-induced spin selectivity in molecular systems has attracted extensive interest among the scientific communities. Here, we investigate the effect of the gate voltage on spin-selective electron transport through the α\alpha-helical peptide/protein molecule contacted by two nonmagnetic electrodes. Based on an effective model Hamiltonian and the Landauer-B\"uttiker formula, we calculate the conductance and the spin polarization under an external electric field which is perpendicular to the helix axis of the α\alpha-helical peptide/protein molecule. Our results indicate that both the magnitude and the direction of the gate field have a significant effect on the conductance and the spin polarization. The spin filtration efficiency can be improved by properly tuning the gate voltage, especially in the case of strong dephasing regime. And the spin polarization increases monotonically with the molecular length without the gate voltage, which is consistent with the recent experiment, and presents oscillating behavior in the presence of the gate voltage. In addition, the spin selectivity is robust against the dephasing, the on-site energy disorder, and the space angle disorder under the gate voltage. Our results could motivate further experimental and theoretical works on the chiral-based spin selectivity in molecular systems.Comment: 8 pages, 7 figure

    Delocalization and scaling properties of low-dimensional quasiperiodic systems

    Full text link
    In this paper, we explore the localization transition and the scaling properties of both quasi-one-dimensional and two-dimensional quasiperiodic systems, which are constituted from coupling several Aubry-Andr\'{e} (AA) chains along the transverse direction, in the presence of next-nearest-neighbor (NNN) hopping. The localization length, two-terminal conductance, and participation ratio are calculated within the tight-binding Hamiltonian. Our results reveal that a metal-insulator transition could be driven in these systems not only by changing the NNN hopping integral but also by the dimensionality effects. These results are general and hold by coupling distinct AA chains with various model parameters. Furthermore, we show from finite-size scaling that the transport properties of the two-dimensional quasiperiodic system can be described by a single parameter and the scaling function can reach the value 1, contrary to the scaling theory of localization of disordered systems. The underlying physical mechanism is discussed.Comment: 9 pages, 8 figure

    Sizes and Kinematics of Extended Narrow-Line Regions in Luminous Obscured AGN Selected by Broadband Images

    Full text link
    To study the impact of active galactic nuclei (AGN) feedback on the galactic ISM, we present Magellan long-slit spectroscopy of 12 luminous nearby type 2 AGN (L_bol~10^{45.0-46.5} erg/s, z~0.1). These objects are selected from a parent sample of spectroscopically identified AGN to have high [OIII]{\lambda}5007 and WISE mid-IR luminosities and extended emission in the SDSS r-band images, suggesting the presence of extended [OIII]{\lambda}5007 emission. We find spatially resolved [OIII] emission (2-35 kpc from the nucleus) in 8 out of 12 of these objects. Combined with samples of higher luminosity type 2 AGN, we confirm that the size of the narrow-line region (R_NLR) scales with the mid-IR luminosity until the relation flattens at ~10 kpc. Nine out of 12 objects in our sample have regions with broad [OIII] linewidths (w_80>600 km/s), indicating outflows. We define these regions as the kinematically-disturbed region (KDR). The size of the KDR (R_KDR) is typically smaller than R_NLR by few kpc but also correlates strongly with the AGN mid-IR luminosity. Given the unknown density in the gas, we derive a wide range in the energy efficiency {\eta}=dot{E}/L_bol=0.01%-30%. We find no evidence for an AGN luminosity threshold below which outflows are not launched. To explain the sizes, velocity profiles, and high occurrence rates of the outflows in the most luminous AGN, we propose a scenario in which energy-conserving outflows are driven by AGN episodes with ~10^8-year durations. Within each episode the AGN flickers on shorter timescales, with a cadence of ~10^6 year active phases separated by ~10^7 years.Comment: 32 pages, 21 figures, ApJ in revie
    corecore