5 research outputs found

    PRMT7 Inhibitor SGC8158 Enhances Doxorubicin-Induced DNA Damage and Its Cytotoxicity

    No full text
    Protein arginine methyltransferase 7 (PRMT7) regulates various cellular responses, including gene expression, cell migration, stress responses, and stemness. In this study, we investigated the biological role of PRMT7 in cell cycle progression and DNA damage response (DDR) by inhibiting PRMT7 activity with either SGC8158 treatment or its specific siRNA transfection. Suppression of PRMT7 caused cell cycle arrest at the G1 phase, resulting from the stabilization and subsequent accumulation of p21 protein. In addition, PRMT7 activity is closely associated with DNA repair pathways, including both homologous recombination and non-homologous end-joining. Interestingly, SGC8158, in combination with doxorubicin, led to a synergistic increase in both DNA damage and cytotoxicity in MCF7 cells. Taken together, our data demonstrate that PRMT7 is a critical modulator of cell growth and DDR, indicating that it is a promising target for cancer treatment

    Effectiveness of tumor-treating fields to reduce the proliferation and migration of liposarcoma cell lines

    No full text
    Liposarcoma (LPS) is a rare type of soft tissue sarcoma that constitutes 20% of all sarcoma cases in adults. Effective therapeutic protocols for human LPS are not well-defined. Tumor-treating fields (TTFields) are a novel and upcoming field for antitumor therapy. TTFields combined with chemoradiotherapy have proven to be more effective than TTFields combined with radiotherapy or chemotherapy alone. The present study aimed to assess the effectiveness of TTFields in inhibiting cell proliferation and viability for the anticancer treatment of LPS. The present study used TTFields (frequency, 150 kHz; intensity, 1.0 V/cm) to treat two LPS cell lines (94T778 and SW872) and analyzed the antitumor effects. According to trypan blue and MTT assay results, TTFields markedly reduced the viability and proliferation of LPS cell lines along with the formation of colonies in three-dimensional culture. Based on the Transwell chamber assay, TTFields treatment also markedly reduced the migration of LPS cells. Furthermore, as shown by the higher activation of caspase-3 in the Caspase-3 activity assay and the results of the reactive oxygen species (ROS) assay, TTFields increased the formation of ROS in the cells and enhanced the proportion of apoptotic cells. The present study also investigated the inhibitory effect of TTFields in combination with doxorubicin (DOX) on the migratory capacity of tumor cells. The results demonstrated that TTFields treatment synergistically induced the ROS-induced apoptosis of LPS cancer cell lines and inhibited their migratory behavior. In conclusion, the present study demonstrated the potential of TTFields in improving the sensitivity of LPS cancer cells, which may lay the foundation for future clinical trials of this combination treatment strategy.FALS

    Natural Products for Pancreatic Cancer Treatment: From Traditional Medicine to Modern Drug Discovery

    No full text
    Pancreatic cancer, the seventh most lethal cancer around the world, is considered complicated cancer due to poor prognosis and difficulty in treatment. Despite all the conventional treatments, including surgical therapy and chemotherapy, the mortality rate is still high. Therefore, the possibility of using natural products for pancreatic cancer is increasing. In this study, 68 natural products that have anti-pancreatic cancer effects reported within five years were reviewed. The mechanisms of anti-cancer effects were divided into four types: apoptosis, anti-metastasis, anti-angiogenesis, and anti-resistance. Most of the studies were conducted for natural products that induce apoptosis in pancreatic cancer. Among them, plant extracts such as Eucalyptus microcorys account for the major portion. Some natural products, including Moringa, Coix seed, etc., showed multi-functional properties. Natural products could be beneficial candidates for treating pancreatic cancer

    Unlocking the benefits of glassy-like carbon synthesis: Direct immobilization of single Ni sites for robust electrochemical CO2 reduction reaction

    No full text
    Stable electrodes are crucial for the practical applications of electrochemical systems. In this study, we report a simple method for synthesizing three-dimensional glassy-like carbon (3D·GC) on an alumina substrate through pyrolysis of benzyl alcohol and applying it to electrocatalytic reactions. Given its distinctive 3D morphology and stability in aqueous solution, the 3D·GC electrode exhibits significantly higher electrocatalytic activity than the commercial GC. Moreover, the rough surface of the 3D·GC electrode is favorable for direct immobilization of catalytic sites, such as metals (Au and Ag) and single-atom catalysts. The developed method for immobilizing single Ni sites is successfully applied to the 3D·GC electrode, resulting in the Ni SAC-3D·GC electrode that exhibits high CO selectivity and durability for electrochemical CO2 reduction. The Faradaic efficiency of CO is over 90% across a wide potential range. Due to direct immobilization, the Ni SAC-3D·GC electrode shows remarkable stability even after multiple reuse cycles, indicating its potential for long-term electrocatalytic applications. To gain an understanding of the mechanism underlying the high CO selectivity during CO2 reduction, the theoretical interactions between the individual Ni sites and the carbon substrate are explored. This theoretical analysis highlights the crucial role of the carbon substrate in stabilizing the COOH intermediate for electrochemical CO2 reduction under neutral conditions
    corecore