7 research outputs found
The Ariadne's Clew Algorithm
We present a new approach to path planning, called the "Ariadne's clew
algorithm". It is designed to find paths in high-dimensional continuous spaces
and applies to robots with many degrees of freedom in static, as well as
dynamic environments - ones where obstacles may move. The Ariadne's clew
algorithm comprises two sub-algorithms, called Search and Explore, applied in
an interleaved manner. Explore builds a representation of the accessible space
while Search looks for the target. Both are posed as optimization problems. We
describe a real implementation of the algorithm to plan paths for a six degrees
of freedom arm in a dynamic environment where another six degrees of freedom
arm is used as a moving obstacle. Experimental results show that a path is
found in about one second without any pre-processing
The Ariadne's Clew Algorithm
We present a new approach to path planning, called the ``Ariadne's clew algorithm''. It is designed to find paths in high-dimensional continuous spaces and applies to robots with many degrees of freedom in static, as well as dynamic environments --- ones where obstacles may move. The Ariadne's clew algorithm comprises two sub-algorithms, called SEARCH and EXPLORE, applied in an interleaved manner. EXPLORE builds a representation of the accessible space while SEARCH looks for the target. Both are posed as optimization problems. We describe a real implementation of the algorithm to plan paths for a six degrees of freedom arm in a dynamic environment where another six degrees of freedom arm is used as a moving obstacle. Experimental results show that a path is found in about one second without any pre-processing
An explication of uncertain evidence in Bayesian networks: likelihood evidence and probabilistic evidence
This paper is closed access.This paper proposes a systematized presentation and a terminology for observations in a Bayesian network. It focuses on the three main concepts of uncertain evidence, namely likelihood evidence and fixed and not-fixed probabilistic evidence, using a review of previous literature. A probabilistic finding on a variable is specified by a local probability distribution and replaces any former belief in that variable. It is said to be fixed or not fixed regarding whether it has to be kept unchanged or not after the arrival of observation on other variables. Fixed probabilistic evidence is defined by Valtorta et al. (J Approx Reason 29(1):71–106 2002) under the name soft evidence, whereas the concept of not-fixed probabilistic evidence has been discussed by Chan and Darwiche (Artif Intell 163(1):67–90 2005). Both concepts have to be clearly distinguished from likelihood evidence defined by Pearl (1988), also called virtual evidence, for which evidence is specified as a likelihood ratio, that often represents the unreliability of the evidence. Since these three concepts of uncertain evidence are not widely understood, and the terms used to describe these concepts are not well established, most Bayesian networks engines do not offer well defined propagation functions to handle them. Firstly, we present a review of uncertain evidence and the proposed terminology, definitions and concepts related to the use of uncertain evidence in Bayesian networks. Then we describe updating algorithms for the propagation of uncertain evidence. Finally, we propose several results where the use of fixed or not-fixed probabilistic evidence is required