5,542 research outputs found

    Numerical Modeling of Shock-Induced Damage for Granite under Dynamic Loading

    Get PDF
    Johnson-Holmquist constitutive model for brittle materials, coupled with a crack softening model, is used to describe the deviatoric and tensile crack propagation beneath impact crater in granite. Model constants are determined either directly from static uniaxial strain loading experiments, or indirectly from numerical adjustment. Constants are put into AUTODYN-2D from Century Dynamics to simulate the shock-induced damage in granite targets impacted by projectiles at different velocities. The agreement between experimental data and simulated results is encouraging. Instead of traditional grid-based methods, a Smooth Particle Hydrodynamics solver is used to define damaged regions in brittle media

    Giant Impact Induced Atmospheric Blow-Off

    Get PDF
    Previous calculations indicate that the Earth suffered impacts from objects up to Mars size. Such a giant impact may have produced a temporary ejecta-based ring that accreted to form the Moon. To simulate the surface waves from such events we approximated the cratering source as a buried pressurized sphere. For a 10^27 J impactor we calculated the resulting surface wave using the mode summation method of Sato et al.. For such an impact, the solid Earth free-surface velocity above, and antipodal to, the source achieves 2.6 and 1.9 km/s. Such large ground motions pump the atmosphere and result in upward particle motions which cause the atmosphere to be accelerated to excess of the escape velocity (11.2 km/s) at high altitudes. For a 1.3 × 10^32 J Moon-forming impact we calculate that ~50% of the Earth's atmosphere is accelerated to escape

    Electron-spin dynamics induced by photon spins

    Full text link
    Strong rotating magnetic fields may cause a precession of the electron's spin around the rotation axis of the magnetic field. The superposition of two counterpropagating laser beams with circular polarization and opposite helicity features such a rotating magnetic field component but also carries spin. The laser's spin density, that can be expressed in terms of the lase's electromagnetic fields and potentials, couples to the electron's spin via a relativistic correction to the Pauli equation. We show that the quantum mechanical interaction of the electron's spin with the laser's rotating magnetic field and with the laser's spin density counteract each other in such a way that a net spin rotation remains with a precession frequency that is much smaller than the frequency one would expect from the rotating magnetic field alone. In particular, the frequency scales differently with the laser's electric field strength depending on if relativistic corrections are taken into account or not. Thus, the relativistic coupling of the electron's spin to the laser's spin density changes the dynamics not only quantitatively but also qualitatively as compared to the nonrelativistic theory. The electron's spin dynamics is a genuine quantum mechanical relativistic effect

    Shock wave induced vaporization of porous solids

    Get PDF
    Strong shock waves generated by hypervelocity impact can induce vaporization in solid materials. To pursue knowledge of the chemical species in the shock-induced vapors, one needs to design experiments that will drive the system to such thermodynamic states that sufficient vapor can be generated for investigation. It is common to use porous media to reach high entropy, vaporized states in impact experiments. We extended calculations by Ahrens [J. Appl. Phys. 43, 2443 (1972)] and Ahrens and O'Keefe [The Moon 4, 214 (1972)] to higher distentions (up to five) and improved their method with a different impedance match calculation scheme and augmented their model with recent thermodynamic and Hugoniot data of metals, minerals, and polymers. Although we reconfirmed the competing effects reported in the previous studies: (1) increase of entropy production and (2) decrease of impedance match, when impacting materials with increasing distentions, our calculations did not exhibit optimal entropy-generating distention. For different materials, very different impact velocities are needed to initiate vaporization. For aluminum at distention (m)<2.2, a minimum impact velocity of 2.7 km/s is required using tungsten projectile. For ionic solids such as NaCl at distention <2.2, 2.5 km/s is needed. For carbonate and sulfate minerals, the minimum impact velocities are much lower, ranging from less than 1 to 1.5 km/s

    Spin dynamics in relativistic light-matter interaction

    Full text link
    Various spin effects are expected to become observable in light-matter interaction at relativistic intensities. Relativistic quantum mechanics equipped with a suitable relativistic spin operator forms the theoretical foundation for describing these effects. Various proposals for relativistic spin operators have been offered by different authors, which are presented in a unified way. As a result of the operators' mathematical properties only the Foldy-Wouthuysen operator and the Pryce operator qualify as possible proper relativistic spin operators. The ground states of highly charged hydrogen-like ions can be utilized to identify a legitimate relativistic spin operator experimentally. Subsequently, the Foldy-Wothuysen spin operator is employed to study electron-spin precession in high-intensity standing light waves with elliptical polarization. For a correct theoretical description of the predicted electron-spin precession relativistic effects due to the spin angular momentum of the electromagnetic wave has to be taken into account even in the limit of low intensities

    Kapitza-Dirac effect in the relativistic regime

    Full text link
    A relativistic description of the Kapitza-Dirac effect in the so-called Bragg regime with two and three interacting photons is presented by investigating both numerical and perturbative solutions of the Dirac equation in momentum space. We demonstrate that spin-flips can be observed in the two-photon and the three-photon Kapitza-Dirac effect for certain parameters. During the interaction with the laser field the electron's spin is rotated, and we give explicit expressions for the rotation axis and the rotation angle. The off-resonant Kapitza-Dirac effect, that is, when the Bragg condition is not exactly fulfilled, is described by a generalized Rabi theory. We also analyze the in-field quantum dynamics as obtained from the numerical solution of the Dirac equation.Comment: minor correction

    Relativistic spin operators in various electromagnetic environments

    Full text link
    Different operators have been suggested in the literature to describe the electron's spin degree of freedom within the relativistic Dirac theory. We compare concrete predictions of the various proposed relativistic spin operators in different physical situations. In particular, we investigate the so-called Pauli, Foldy-Wouthuysen, Czachor, Frenkel, Chakrabarti, Pryce, and Fradkin-Good spin operators. We demonstrate that when a quantum system interacts with electromagnetic potentials the various spin operators predict different expectation values. This is explicitly illustrated for the scattering dynamics at a potential step and in a standing laser field and also for energy eigenstates of hydrogenic ions. Therefore, one may distinguish between the proposed relativistic spin operators experimentally

    Planned Unit Development

    Get PDF
    The efforts of those seeking imaginative, flexible, and creative results from planning, zoning, and land-use controls have recently been concentrated on planned unit development (PUD). The basic purpose of PUD is to do away with the inflexible dimensional standards and use regulations of conventional zoning and planning laws, and thereby to encourage creative large-scale development in a way which can best utilize the land for the collective benefit of the residents. Individual PUD\u27s most frequently involve the use of density zoning, rather than the conventional technique of minimum lot sizes. Under density zoning, by varying lot sizes and using buildings such as apartments and condominiums along with the customary single- and multi-family types, the developer is allowed to duster his development, as long as the prescribed overall density of dwelling units per acre is maintained. This enables the developer to create more common open space. The emphasis in some PUD\u27s is on mixing different building types or land uses. The basic philosophy of PUD is to substitute flexibility, creativity, and variety for the inflexibility and lack of variety which conventional zoning often imposes on the developer

    Spin effects in strong-field laser-electron interactions

    Full text link
    The electron spin degree of freedom can play a significant role in relativistic scattering processes involving intense laser fields. In this contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac scattering in an x-ray laser field of high intensity, (ii) photo-induced electron-positron pair production in a strong laser wave and (iii) multiphoton electron-positron pair production on an atomic nucleus. We show that in all cases under consideration the electron spin can have a characteristic impact on the process properties and their total probabilities. To this end, spin-resolved calculations based on the Dirac equation in the presence of an intense laser field are performed. The predictions from Dirac theory are also compared with the corresponding results from the Klein-Gordon equation.Comment: 9 pages, 6 figure
    • …
    corecore