3,787 research outputs found
Content-Aware User Clustering and Caching in Wireless Small Cell Networks
In this paper, the problem of content-aware user clustering and content
caching in wireless small cell networks is studied. In particular, a service
delay minimization problem is formulated, aiming at optimally caching contents
at the small cell base stations (SCBSs). To solve the optimization problem, we
decouple it into two interrelated subproblems. First, a clustering algorithm is
proposed grouping users with similar content popularity to associate similar
users to the same SCBS, when possible. Second, a reinforcement learning
algorithm is proposed to enable each SCBS to learn the popularity distribution
of contents requested by its group of users and optimize its caching strategy
accordingly. Simulation results show that by correlating the different
popularity patterns of different users, the proposed scheme is able to minimize
the service delay by 42% and 27%, while achieving a higher offloading gain of
up to 280% and 90%, respectively, compared to random caching and unclustered
learning schemes.Comment: In the IEEE 11th International Symposium on Wireless Communication
Systems (ISWCS) 201
Succinct Dictionary Matching With No Slowdown
The problem of dictionary matching is a classical problem in string matching:
given a set S of d strings of total length n characters over an (not
necessarily constant) alphabet of size sigma, build a data structure so that we
can match in a any text T all occurrences of strings belonging to S. The
classical solution for this problem is the Aho-Corasick automaton which finds
all occ occurrences in a text T in time O(|T| + occ) using a data structure
that occupies O(m log m) bits of space where m <= n + 1 is the number of states
in the automaton. In this paper we show that the Aho-Corasick automaton can be
represented in just m(log sigma + O(1)) + O(d log(n/d)) bits of space while
still maintaining the ability to answer to queries in O(|T| + occ) time. To the
best of our knowledge, the currently fastest succinct data structure for the
dictionary matching problem uses space O(n log sigma) while answering queries
in O(|T|log log n + occ) time. In this paper we also show how the space
occupancy can be reduced to m(H0 + O(1)) + O(d log(n/d)) where H0 is the
empirical entropy of the characters appearing in the trie representation of the
set S, provided that sigma < m^epsilon for any constant 0 < epsilon < 1. The
query time remains unchanged.Comment: Corrected typos and other minor error
Models for the modern power grid
This article reviews different kinds of models for the electric power grid
that can be used to understand the modern power system, the smart grid. From
the physical network to abstract energy markets, we identify in the literature
different aspects that co-determine the spatio-temporal multilayer dynamics of
power system. We start our review by showing how the generation, transmission
and distribution characteristics of the traditional power grids are already
subject to complex behaviour appearing as a result of the the interplay between
dynamics of the nodes and topology, namely synchronisation and cascade effects.
When dealing with smart grids, the system complexity increases even more: on
top of the physical network of power lines and controllable sources of
electricity, the modernisation brings information networks, renewable
intermittent generation, market liberalisation, prosumers, among other aspects.
In this case, we forecast a dynamical co-evolution of the smart grid and other
kind of networked systems that cannot be understood isolated. This review
compiles recent results that model electric power grids as complex systems,
going beyond pure technological aspects. From this perspective, we then
indicate possible ways to incorporate the diverse co-evolving systems into the
smart grid model using, for example, network theory and multi-agent simulation.Comment: Submitted to EPJ-ST Power Grids, May 201
Back Reflector with Diffractive Gratings for Light-Trapping in Thin-Film III-V Solar Cells
We report on the development of light-Trapping architectures applied to thin-film solar cells. In particular, we focus on enhancing the absorption at 1-eV spectral range for dilute nitride and quantum dot materials and report on the influence of planar back reflectors on the photovoltaic properties. Moreover, we discuss the properties of polymer diffraction gratings with enhanced light-Trapping capability pointing to advantageous properties of pyramidal gratings. In order to understand the suitability of these polymer grating architectures for space applications, we have performed an electron irradiation study (1 MeV) revealing the absence of reflectance changes up to doses of 1×1015 e-/cm
Linear Parsing Expression Grammars
PEGs were formalized by Ford in 2004, and have several pragmatic operators
(such as ordered choice and unlimited lookahead) for better expressing modern
programming language syntax. Since these operators are not explicitly defined
in the classic formal language theory, it is significant and still challenging
to argue PEGs' expressiveness in the context of formal language theory.Since
PEGs are relatively new, there are several unsolved problems.One of the
problems is revealing a subclass of PEGs that is equivalent to DFAs. This
allows application of some techniques from the theory of regular grammar to
PEGs. In this paper, we define Linear PEGs (LPEGs), a subclass of PEGs that is
equivalent to DFAs. Surprisingly, LPEGs are formalized by only excluding some
patterns of recursive nonterminal in PEGs, and include the full set of ordered
choice, unlimited lookahead, and greedy repetition, which are characteristic of
PEGs. Although the conversion judgement of parsing expressions into DFAs is
undecidable in general, the formalism of LPEGs allows for a syntactical
judgement of parsing expressions.Comment: Parsing expression grammars, Boolean finite automata, Packrat parsin
Luminescence quenching of the triplet excimer state by air traces in gaseous argon
While developing a liquid argon detector for dark matter searches we
investigate the influence of air contamination on the VUV scintillation yield
in gaseous argon at atmospheric pressure. We determine with a radioactive
alpha-source the photon yield for various partial air pressures and different
reflectors and wavelength shifters. We find for the fast scintillation
component a time constant tau1= 11.3 +- 2.8 ns, independent of gas purity.
However, the decay time of the slow component depends on gas purity and is a
good indicator for the total VUV light yield. This dependence is attributed to
impurities destroying the long-lived argon excimer states. The population ratio
between the slowly and the fast decaying excimer states is determined for
alpha-particles to be 5.5 +-0.6 in argon gas at 1100 mbar and room temperature.
The measured mean life of the slow component is tau2 = 3.140 +- 0.067 microsec
at a partial air pressure of 2 x 10-6 mbar.Comment: 7 pages submitted to NIM
- …